Exemple #1
0
    a_width = annotation.size[1]
    a_height = annotation.size[0]

    margin_y = annotation.loc[0]
    margin_x = annotation.loc[1]

    num_patches_ann = np.ceil(float(config_opt.num_patches) * a_width * a_height / total_object_area)

    if patch_count + num_patches_ann > config_opt.num_patches:
        num_patches_ann = config_opt.num_patches - patch_count

    y_ind = np.random.randint(0, a_height - config_opt.feature.cell.patch_size, num_patches_ann) + margin_y
    x_ind = np.random.randint(0, a_width - config_opt.feature.cell.patch_size, num_patches_ann) + margin_x

    x_ind = x_ind[:, np.newaxis, np.newaxis] + patch_pixel_map_x[np.newaxis, :, :]
    y_ind = y_ind[:, np.newaxis, np.newaxis] + patch_pixel_map_y[np.newaxis, :, :]

    frame = vivid.cvmat2array(gv.get_frame(image_ind))

    patches[patch_count : patch_count + num_patches_ann] = frame[y_ind, x_ind].reshape((num_patches_ann, -1))

    print "%s: %d" % (annotation.image_name, num_patches_ann)

    patch_count += num_patches_ann

patch_means = np.mean(patches, axis=1)

patches = patches - patch_means[:, np.newaxis]

np.save(target_file, patches)
Exemple #2
0
        total_object_area))

    if (patch_count + num_patches_ann > config_opt.num_patches):
        num_patches_ann = config_opt.num_patches - patch_count

    y_ind = np.random.randint(0, a_height - config_opt.feature.cell.patch_size,
                              num_patches_ann) + margin_y
    x_ind = np.random.randint(0, a_width - config_opt.feature.cell.patch_size,
                              num_patches_ann) + margin_x

    x_ind = x_ind[:, np.newaxis,
                  np.newaxis] + patch_pixel_map_x[np.newaxis, :, :]
    y_ind = y_ind[:, np.newaxis,
                  np.newaxis] + patch_pixel_map_y[np.newaxis, :, :]

    frame = vivid.cvmat2array(gv.get_frame(image_ind))

    patches[patch_count:patch_count +
            num_patches_ann] = (frame[y_ind, x_ind].reshape(
                (num_patches_ann, -1)))

    print "%s: %d" % (annotation.image_name, num_patches_ann)

    patch_count += num_patches_ann

patch_means = np.mean(patches, axis=1)

patches = patches - patch_means[:, np.newaxis]

np.save(target_file, patches)
Exemple #3
0
    def testRead(self):
        frame_uint8 = vivid.cvmat2array(self.fv.get_frame(0))

        assert(np.allclose(frame_uint8[:,:,::-1], self.reference_image_uint8))
        config_opts[0].image_sets_fp[options.set_type][annotation_image_ind])

    annotation = config_opts[0].annotations[annotation_ind]

    max_size = np.max(annotation.size)
    max_dim = np.argmax(annotation.size)

    o_height = config_opts[0].object_size[0]
    o_width = config_opts[0].object_size[1]
    scaling = float(config_opts[0].object_size[max_dim]) / max_size

    annotation_location = [annotation.loc[0], annotation.loc[1], scaling]

    ss.scale = scaling

    gr_frame = vivid.cvmat2array(gv.get_frame(annotation_image_ind))

    scaled_frame = vivid.cvmat2array(ss.get_frame(annotation_image_ind))

    scaled_loc = np.array(annotation.loc) * scaling
    scaled_size = np.array(annotation.size) * scaling

    scaled_fixed_loc = (scaled_loc -
        (np.array(config_opts[0].object_size) - np.array(scaled_size)) / 2.0)

    scaled_fixed_loc = (
        (scaled_fixed_loc / config_opts[0].feature.window_stride).astype('int') *
        config_opts[0].feature.window_stride)

    margin_up = -scaled_fixed_loc[0]
    margin_left = -scaled_fixed_loc[1]
def detect_and_write(input_images, output_images):
    DETECTION_THRESHOLD = -.5

    config_opt = ConfigOpt(options.config_source)

    if options.bootstrap:
        svm_model_file = os.path.join(config_opt.svm_model_path, "modelb.svm")
    else:
        svm_model_file = os.path.join(config_opt.svm_model_path, "model1.svm")

    lm = read_liblinear_model(svm_model_file)

    w = lm.w[:-1]
    b = lm.w[-1] * lm.bias

    fv = vivid.ImageSource(imlist=input_images)
    cs = vivid.ConvertedSource(fv,
                               target_type=vivid.cv.CV_32FC3,
                               scale=1.0 / 255.0)
    gv = vivid.GreySource(cs)

    clusters = np.load(config_opt.dictionary_file).reshape((
        config_opt.feature.cell.dictionary_size,
        config_opt.feature.cell.patch_size,
        config_opt.feature.cell.patch_size))

    fs = FeatureSource(gv, config_opt.feature, clusters)

    all_scores = []

    for fi, input_image, output_image in zip(
        xrange(len(input_images)), input_images, output_images):

        print('Image: {0}'.format(input_image))

        fs.init_frame(fi)

        frame = vivid.cvmat2array(cs.get_frame(fi))[:, :, ::-1]

        while True:
            try:
                locs, scale = fs.init_next_scale()

                print("Processing scale: {0:.2f}\t".format(scale))

                num_y, num_x = locs[0].shape

                scale_scores = np.empty((num_y, num_x), dtype='float32')

                for yind in range(0, num_y, 10):
                    ymin = yind
                    ymax = min(num_y, yind + 10)

                    feas = fs.get_features_from_scale(
                        ymin=yind, ymax=ymax,
                        xmin=0, xmax=num_x)

                    scale_scores[ymin:ymax, :] = (feas *
                        w[np.newaxis, np.newaxis, :]).sum(axis=2) + b

                detections = scale_scores >= DETECTION_THRESHOLD

                for yi, xi, detection_score in zip(
                        locs[0][detections],
                        locs[1][detections],
                        scale_scores[detections]):

                    if detection_score >= 0:
                        box_color = [1.0, 0, 0]
                    else:
                        box_color = [1.0, 1.0, 0]

                    print("Detection at: y: {0}, x: {1}, s: {2:.2f}".format(
                            yi, xi, scale))

                    frame = draw_bounding_box(frame, np.array([yi, xi, scale]),
                                              text="%.3f" % detection_score,
                                              color=box_color)
            except EndOfScales:
                break

        imsave(output_image, frame)
Exemple #6
0
    def init_frame(self, frame_num,
                     margin_up=None, margin_down=None,
                     margin_left=None, margin_right=None,
                     scales=None):

        self.scales = scales

        self.feature_frame = frame_num

        self.last_scale = -1

        """
        this is the entry point, call this function to  compute features
        margin is in terms of window strides
        """
        min_offset = self.feature_opt.cell.patch_size / 2

        if margin_up == None:
            margin_up = -min_offset
        if margin_down == None:
            margin_down = -min_offset
        if margin_left == None:
            margin_left = -min_offset
        if margin_right == None:
            margin_right = -min_offset

        self.margins = [margin_up, margin_down, margin_left, margin_right]

        frame_size = np.array([self.origin.get_frame(frame_num).height,
                               self.origin.get_frame(frame_num).width])

        self.scaled_sources = []
        if self.scales == None:
            scale_factor = 1.0
            self.scales = []

            while (True):
                cs = vivid.CachedSource(vivid.ScaledSource(
                                           self.origin,
                                           scale=1.0 / scale_factor),
                                        cache_size=1)

                frame_size = np.array(vivid.cvmat2array(
                    cs.get_frame(self.feature_frame)).shape, dtype='float32')

                #see if we can fit a window in this scale
                h_windows = ((frame_size[0] - margin_up + margin_down) /
                    self.feature_opt.window_size[0])

                w_windows = ((frame_size[1] + margin_left + margin_right) /
                    self.feature_opt.window_size[1])

                #print "h: %.2f\t%.2f" % (h_windows, w_windows)
                if h_windows < 1 or w_windows < 1:
                    break

                self.scales.append(1.0 / scale_factor)
                scale_factor *= self.feature_opt.scale_step
                self.scaled_sources.append(cs)

        else:
            for s in scales:
                self.scaled_sources.append(
                    vivid.ScaledSource(self.origin, scale=s))
Exemple #7
0
        config_opts[0].image_sets_fp[options.set_type][annotation_image_ind])

    annotation = config_opts[0].annotations[annotation_ind]

    max_size = np.max(annotation.size)
    max_dim = np.argmax(annotation.size)

    o_height = config_opts[0].object_size[0]
    o_width = config_opts[0].object_size[1]
    scaling = float(config_opts[0].object_size[max_dim]) / max_size

    annotation_location = [annotation.loc[0], annotation.loc[1], scaling]

    ss.scale = scaling

    gr_frame = vivid.cvmat2array(gv.get_frame(annotation_image_ind))

    scaled_frame = vivid.cvmat2array(ss.get_frame(annotation_image_ind))

    scaled_loc = np.array(annotation.loc) * scaling
    scaled_size = np.array(annotation.size) * scaling

    scaled_fixed_loc = (
        scaled_loc -
        (np.array(config_opts[0].object_size) - np.array(scaled_size)) / 2.0)

    scaled_fixed_loc = ((scaled_fixed_loc /
                         config_opts[0].feature.window_stride).astype('int') *
                        config_opts[0].feature.window_stride)

    margin_up = -scaled_fixed_loc[0]
Exemple #8
0
import pathfinder
import vivid

from matplotlib.pyplot import imshow, show, gray

# Create the reader for a list of image files
iv = vivid.ImageSource(imlist=["./media/kewell1.jpg"])

# Source for converting to float and scaling to [0,1]
cs = vivid.ConvertedSource(iv, vivid.cv.CV_32FC3, 1.0 / 255.0)

# Source for covnerting to grayscale
gs = vivid.GreySource(cs)

# Source for resizing
ss = vivid.ScaledSource(gs, 0.5)

# Get the first image
frame = cs.get_frame(0)

# Get the grayscale version of the first image
frame_gray = gs.get_frame(0)

# Get the scaled version of the grayscale image
frame_gray_scaled = ss.get_frame(0)

# Convert into numpy arrays
fr = vivid.cvmat2array(frame)
fr_gray = vivid.cvmat2array(frame_gray)
fr_gray_scaled = vivid.cvmat2array(frame_gray_scaled)
Exemple #9
0
import pathfinder
import vivid
import numpy as np

# Create the reader for a list of image files
iv = vivid.ImageSource(imlist=['./media/kewell1.jpg'])
cs = vivid.ConvertedSource(iv, vivid.cv.CV_32FC3, 1.0 / 255.0)
sqs = vivid.SquaredSource(cs)

sq_frame = vivid.cvmat2array(sqs.get_frame(0))

reference_sq_frame = vivid.cvmat2array(iv.get_frame(0)).astype('float32') / 255.0
reference_sq_frame *= reference_sq_frame

print "Check: " + str(np.allclose(reference_sq_frame, sq_frame))