def __init__(self):
     with open('vocabulary-new.pkl', 'rb') as f:
         self.voc = pickle.load(f)
     url = 'static/'
     self.imlist = vocabulary.get_img_list(url)
     self.feature = vocabulary.get_feature_list(url)
     self.nbr_images = len(self.imlist)
     self.ndx = range(self.nbr_images)
     self.maxres = 15
     self.header = """
         <!doctype html>
         <head>
         <title>Image search</title>
         </head>
         <body>
         """
     self.footer = """
 def __init__(self):
     with open('vocabulary-new.pkl', 'rb') as f:
         self.voc = pickle.load(f)
     url = 'static/'
     self.imlist = vocabulary.get_img_list(url)
     self.feature = vocabulary.get_feature_list(url)
     self.nbr_images = len(self.imlist)
     self.ndx = range(self.nbr_images)
     self.maxres = 15
     self.header = """
         <!doctype html>
         <head>
         <title>Image search</title>
         </head>
         <body>
         """
     self.footer = """
Exemple #3
0
# encoding:UTF-8
import pickle
import sift
import imagesearch
import homography
import vocabulary
from vocabulary import *

if __name__=='__main__':
    url = '/home/aurora/hdd/workspace/PycharmProjects/data/pcv_img/first1000/'
    imlists = vocabulary.get_img_list(url)
    feature = vocabulary.get_feature_list(url)
    nbr_images = len(imlists)
    with open('vocabulary-new.pkl', 'rb') as f:
        voc = pickle.load(f)

    src = imagesearch.Searcher('test.db', voc)

    q_ind = 50
    nbr_results = 20

    res_reg = [w[1] for w in src.query(imlists[q_ind])[:nbr_images]]
    print 'top matches (regular):', res_reg

    q_locs, q_descr = sift.read_feature_from_file(feature[q_ind])
    fp = homography.make_homog(q_locs[:, :2].T)
    model = homography.RansacModel()

    rank = {}
    # load image features for result
    #载入候选图像的特征