Exemple #1
0
h, x, V, R, I = initialize(a, b, N)                 # initialization
scene = vp.display(background=(1,1,1), ambient=1)   # set scene
bars = vpm.bars(x, z, z, z, h, 0.05, (1,0,1))       # wave function
line = vpm.line(x, z, z, (1,0,1), 0.02)             
pot  = vpm.line(x, V*0.05, z, (0,0,0), 0.02)        # potential line

t, ic, cycle = 0.0, 0, 10               # t, animation cycle
dt, psi = 0.001, R + 1j*I               # initialize dt, complex psi
ta, pba = [], []                        # time, prob. arrays
A = np.ones((3, N+1), dtype=complex)    # prepare band matrix A, B  
A[1,:] = 2*(2j*h*h/dt - 1 - h*h*V)
dB = - np.conjugate(A[1,:])             # diagonal of B
while(t<=3):
    C = dB*psi                          # prepare RHS 
    C[1:-1] -= (psi[:-2] + psi[2:])    
    psi = solve_banded((1,1), A, C)     # band matrix solver 
    t, ic = t+dt, ic+1
    if (ic % cycle == 0):
        pb = psi.real**2 + psi.imag**2  # probability   
        ta.append(t), pba.append(pb)    # store data
        line.move(x, mag*pb, z)
        bars.move(x, z, z, mag*pb)
    vp.rate(1200), vpm.wait(scene)

(X, Y), ta = np.meshgrid(x, ta), np.array(ta)
plt.figure()
plt.contour(Y, X, pba, 36, linewidths=1)
plt.plot(ta, 5 - ta*ta, 'r--')          # classical free fall
plt.xlabel('t (a.u.)'), plt.ylabel('x (a.u.)')
plt.show()
    rright = r[:, 0:-1] - r[:, 1:]              # rel pos to right neighbor
    ftop, fright = force(rtop), force(rright)   # forces from top, right
    f[0:-1, :] = ftop                   # force from top 
    f[:, 0:-1] += fright                # force from right 
    f[1:, :] -= ftop                    # below, left: use 3rd law 
    f[:, 1:] -= fright
    a = (f - damp*v)/mass + gvec
    v[0,0], v[0,-1], v[-1,0], v[-1,-1]=0, 0, 0, 0   # fixed coners 
    return np.array([v,a])
    
L, M, N = 2.0, 15, 15                   # size, (M,N) particle array
h, mass, damp = 0.01, 0.004, 0.01       # keep damp between [.01,.1]
x, y = np.linspace(0,L,M), np.linspace(0,L,N)       # particle grid
r, v = np.zeros((N,M,3)), np.zeros((N,M,3))
spring_k, spring_l = 50.0, x[1]-x[0]    # spring const., relaxed length
r[:,:, 0], r[:,:, 1] = np.meshgrid(x,y)             # initialize pos
Y, gvec = np.array([r, v]), np.array([0,0,-9.8])    # [v,a], g vector

scene = vp.display(title='Tablecloth', background=(.2,.5,1), 
                   up=(0,0,1), center=(L/2,L/2,-L/4), forward=(1,2,-1))
vp.points(pos=[(0,0,0),(0,L,0),(L,L,0),(L,0,0)], size=50)   # corners
x, y, z = r[:,:,0], r[:,:,1], r[:,:,2]                      # mesh points
net = vpm.net(x, y, z, vp.color.yellow, 0.005)              # mesh net
mesh = vpm.mesh(x, y, z, vp.color.red, vp.color.yellow)

while (1):
    vp.rate(100), vpm.wait(scene)       # pause if key pressed
    Y = ode.RK4(cloth, Y, 0, h)
    x, y, z = Y[0,:,:,0], Y[0,:,:,1], Y[0,:,:,2]
    net.move(x, y, z), mesh.move(x, y, z)
    f[1:, :] -= ftop  # below, left: use 3rd law
    f[:, 1:] -= fright
    a = (f - damp * v) / mass + gvec
    v[0, 0], v[0, -1], v[-1, 0], v[-1, -1] = 0, 0, 0, 0  # fixed coners
    return np.array([v, a])


L, M, N = 2.0, 15, 15  # size, (M,N) particle array
h, mass, damp = 0.01, 0.004, 0.01  # keep damp between [.01,.1]
x, y = np.linspace(0, L, M), np.linspace(0, L, N)  # particle grid
r, v = np.zeros((N, M, 3)), np.zeros((N, M, 3))
spring_k, spring_l = 50.0, x[1] - x[0]  # spring const., relaxed length
r[:, :, 0], r[:, :, 1] = np.meshgrid(x, y)  # initialize pos
Y, gvec = np.array([r, v]), np.array([0, 0, -9.8])  # [v,a], g vector

scene = vp.display(title='Tablecloth',
                   background=(.2, .5, 1),
                   up=(0, 0, 1),
                   center=(L / 2, L / 2, -L / 4),
                   forward=(1, 2, -1))
vp.points(pos=[(0, 0, 0), (0, L, 0), (L, L, 0), (L, 0, 0)], size=50)  # corners
x, y, z = r[:, :, 0], r[:, :, 1], r[:, :, 2]  # mesh points
net = vpm.net(x, y, z, vp.color.yellow, 0.005)  # mesh net
mesh = vpm.mesh(x, y, z, vp.color.red, vp.color.yellow)

while (1):
    vp.rate(100), vpm.wait(scene)  # pause if key pressed
    Y = ode.RK4(cloth, Y, 0, h)
    x, y, z = Y[0, :, :, 0], Y[0, :, :, 1], Y[0, :, :, 2]
    net.move(x, y, z), mesh.move(x, y, z)
Exemple #4
0
        rij = r[i]-r[i+1:]                  # rij for all j>i 
        rij[rij > HL]  -= L                 # periodic bc
        rij[rij < -HL] += L
        r2 = np.sum(rij*rij, axis=1)        # |rij|^2
        r6 = r2*r2*r2
        for k in [0,1,2]:                   # L-J force in x,y,z
            fij = 12.*(1. - r6)*rij[:,k]/(r6*r6*r2)
            a[i,k] += np.sum(fij)
            a[i+1:,k] -= fij                # 3rd law
    return a
    
L, N = 10.0, 32                             # cube size, num. atoms
atoms, HL, t, h = [], L/2., 0., 0.002
r, v =  np.zeros((N,3)), np.zeros((N,3))

scene = vp.display(background=(.2,.5,1), center=(L/2, L/3, L/2))
vp.box(pos=(HL,HL,HL), length=L, height=L, width=L, opacity=0.3)
for i in range(N):                          # initial pos, vel
    for k in range(3):
        r[i,k] = L*rnd.random()
        v[i,k] = 1-2*rnd.random()
    atoms.append(vp.sphere(pos=r[i], radius=0.04*L, color=(1,0,1)))
v -= np.sum(v, axis=0)/N                    # center of mass frame 

while (1):
    vpm.wait(scene), vp.rate(1000)
    r, v = ode.leapfrog(nbody, r, v, t, h)
    r[r > L]  -= L                          # periodic bc
    r[r < 0.] += L
    for i in range(N): atoms[i].pos = r[i]  # move atoms
    return [psi[1], 2*(V(x)-E)*psi[0]]
          
# initialization and animation setup 
a, V0 = 4.0, 4.                     # well width, depth
R, N = 4*a, 200                     # limit, intervals
xa = np.linspace(-R, R, 2*N+1)      # grid
h, z = xa[1]-xa[0], np.zeros(2*N+1) # step size
E, dE, dpsi, psix = -V0, 0.001, 1.0, np.zeros(2*N+1)

scene = vp.display(background=(.2,.5,1), range=1.5*a)
wf = vpm.line(xa, psix, z, vp.color.red, .05)
pot = vpm.line(xa, .5*np.vectorize(V)(xa), z, (1,1,1), .04) # pot. V 
info = vp.label(pos=(0, -0.6*a, 0), box=False, height=20)

while (E < 0.0):
    psi, x = [.0, .1], -R
    for i in range(N):              # WF for x <=0
        psi = ode.RK45n(sch, psi, x, h)
        x += h
        psix[i+1] = psi[0]          
    psix[N+1:] = psix[N-1::-1]      # WF for x > 0 by reflection 
    if (dpsi*psi[1] < 0.):          # dpsi/dx changes sign
        info.text='Energy found, E=%5.4f' %(E-dE/2)
        vpm.pause(scene)            # any key to continue
    else:
        info.text='E=%5.3f' %(E)
    wf.move(xa, 2*psix/max(psix), z), vpm.wait(scene), vp.rate(2000)
    dpsi = psi[1]                   # old dpsi/dx at E
    E += dE
    
Exemple #6
0
vp.arrow(pos=(.2, -.2, L), axis=ay, length=0.2, color=(0,1,1))
vp.arrow(pos=(.2, -.2, L), axis=az, length=0.2, color=(1,1,1))
vp.label(pos=(.45, -.2, L), text='E', box=False, height=30)
vp.label(pos=(.25, -.0, L), text='B', box=False, height=30)
vp.label(pos=(.2, -.15, L+.3), text='v', box=False, height=30)

idx, z = np.arange(n), np.linspace(-L, 2*L, n)  # order of vectors
mag = scale*np.sin(2*np.pi*z/L)                 # sine envelope
ewave = vp.curve(color=(1,1,0), pos=np.column_stack((mag,0*z,z)))
bwave = vp.curve(color=(0,1,1), pos=np.column_stack((0*z,mag,z)))
for i in idx:
    E.append( vp.arrow(pos=(0, 0, z[i]), axis=ax, length=mag[i],
                       color=(1,1,0)) )
    B.append( vp.arrow(pos=(0, 0, z[i]), axis=ay, length=mag[i], 
                       color=(0,1,1)) )
while True:
    vp.rate(100), vpm.wait(scene)               # hit a key to pause
    t, mg = t + dt, mag*np.cos(t)               # sinusoidal wave
    for i in range(n):                          
        E[i].pos.z += v*dt                      # traveling wave
        B[i].pos.z += v*dt
        if (E[i].pos.z > 2*L):                  # wrap around
            E[i].pos.z, B[i].pos.z = -L, -L 
            idx = np.insert(idx, 0, i)[:-1]     # move to end 
            
        E[i].axis, B[i].axis = ax, ay           # reset axis to 
        E[i].length, B[i].length = mg[i], mg[i] #   draw correctly
        id = idx[i]
        ewave.pos[i] = (mg[id], 0, E[id].pos.z) # envelope curves
        bwave.pos[i] = (0, mg[id], B[id].pos.z)
h, x, V, R, I = initialize(a, b, N)  # initialization
scene = vp.display(background=(1, 1, 1), ambient=1)  # set scene
bars = vpm.bars(x, z, z, z, h, 0.05, (1, 0, 1))  # wave function
line = vpm.line(x, z, z, (1, 0, 1), 0.02)
pot = vpm.line(x, V * 0.05, z, (0, 0, 0), 0.02)  # potential line

t, ic, cycle = 0.0, 0, 10  # t, animation cycle
dt, psi = 0.001, R + 1j * I  # initialize dt, complex psi
ta, pba = [], []  # time, prob. arrays
A = np.ones((3, N + 1), dtype=complex)  # prepare band matrix A, B
A[1, :] = 2 * (2j * h * h / dt - 1 - h * h * V)
dB = -np.conjugate(A[1, :])  # diagonal of B
while (t <= 3):
    C = dB * psi  # prepare RHS
    C[1:-1] -= (psi[:-2] + psi[2:])
    psi = solve_banded((1, 1), A, C)  # band matrix solver
    t, ic = t + dt, ic + 1
    if (ic % cycle == 0):
        pb = psi.real**2 + psi.imag**2  # probability
        ta.append(t), pba.append(pb)  # store data
        line.move(x, mag * pb, z)
        bars.move(x, z, z, mag * pb)
    vp.rate(1200), vpm.wait(scene)

(X, Y), ta = np.meshgrid(x, ta), np.array(ta)
plt.figure()
plt.contour(Y, X, pba, 36, linewidths=1)
plt.plot(ta, 5 - ta * ta, 'r--')  # classical free fall
plt.xlabel('t (a.u.)'), plt.ylabel('x (a.u.)')
plt.show()
vp.arrow(pos=(.2, -.2, L), axis=ay, length=0.2, color=(0, 1, 1))
vp.arrow(pos=(.2, -.2, L), axis=az, length=0.2, color=(1, 1, 1))
vp.label(pos=(.45, -.2, L), text='E', box=False, height=30)
vp.label(pos=(.25, -.0, L), text='B', box=False, height=30)
vp.label(pos=(.2, -.15, L + .3), text='v', box=False, height=30)

idx, z = np.arange(n), np.linspace(-L, 2 * L, n)  # order of vectors
mag = scale * np.sin(2 * np.pi * z / L)  # sine envelope
ewave = vp.curve(color=(1, 1, 0), pos=np.column_stack((mag, 0 * z, z)))
bwave = vp.curve(color=(0, 1, 1), pos=np.column_stack((0 * z, mag, z)))
for i in idx:
    E.append(
        vp.arrow(pos=(0, 0, z[i]), axis=ax, length=mag[i], color=(1, 1, 0)))
    B.append(
        vp.arrow(pos=(0, 0, z[i]), axis=ay, length=mag[i], color=(0, 1, 1)))
while True:
    vp.rate(100), vpm.wait(scene)  # hit a key to pause
    t, mg = t + dt, mag * np.cos(t)  # sinusoidal wave
    for i in range(n):
        E[i].pos.z += v * dt  # traveling wave
        B[i].pos.z += v * dt
        if (E[i].pos.z > 2 * L):  # wrap around
            E[i].pos.z, B[i].pos.z = -L, -L
            idx = np.insert(idx, 0, i)[:-1]  # move to end

        E[i].axis, B[i].axis = ax, ay  # reset axis to
        E[i].length, B[i].length = mg[i], mg[i]  #   draw correctly
        id = idx[i]
        ewave.pos[i] = (mg[id], 0, E[id].pos.z)  # envelope curves
        bwave.pos[i] = (0, mg[id], B[id].pos.z)
Exemple #9
0
        rij[rij < -HL] += L
        r2 = np.sum(rij * rij, axis=1)  # |rij|^2
        r6 = r2 * r2 * r2
        for k in [0, 1, 2]:  # L-J force in x,y,z
            fij = 12. * (1. - r6) * rij[:, k] / (r6 * r6 * r2)
            a[i, k] += np.sum(fij)
            a[i + 1:, k] -= fij  # 3rd law
    return a


L, N = 10.0, 32  # cube size, num. atoms
atoms, HL, t, h = [], L / 2., 0., 0.002
r, v = np.zeros((N, 3)), np.zeros((N, 3))

scene = vp.display(background=(.2, .5, 1), center=(L / 2, L / 3, L / 2))
vp.box(pos=(HL, HL, HL), length=L, height=L, width=L, opacity=0.3)
for i in range(N):  # initial pos, vel
    for k in range(3):
        r[i, k] = L * rnd.random()
        v[i, k] = 1 - 2 * rnd.random()
    atoms.append(vp.sphere(pos=r[i], radius=0.04 * L, color=(1, 0, 1)))
v -= np.sum(v, axis=0) / N  # center of mass frame

while (1):
    vpm.wait(scene), vp.rate(1000)
    r, v = ode.leapfrog(nbody, r, v, t, h)
    r[r > L] -= L  # periodic bc
    r[r < 0.] += L
    for i in range(N):
        atoms[i].pos = r[i]  # move atoms
Exemple #10
0
    return [psi[1], 2 * (V(x) - E) * psi[0]]


# initialization and animation setup
a, V0 = 4.0, 4.  # well width, depth
R, N = 4 * a, 200  # limit, intervals
xa = np.linspace(-R, R, 2 * N + 1)  # grid
h, z = xa[1] - xa[0], np.zeros(2 * N + 1)  # step size
E, dE, dpsi, psix = -V0, 0.001, 1.0, np.zeros(2 * N + 1)

scene = vp.display(background=(.2, .5, 1), range=1.5 * a)
wf = vpm.line(xa, psix, z, vp.color.red, .05)
pot = vpm.line(xa, .5 * np.vectorize(V)(xa), z, (1, 1, 1), .04)  # pot. V
info = vp.label(pos=(0, -0.6 * a, 0), box=False, height=20)

while (E < 0.0):
    psi, x = [.0, .1], -R
    for i in range(N):  # WF for x <=0
        psi = ode.RK45n(sch, psi, x, h)
        x += h
        psix[i + 1] = psi[0]
    psix[N + 1:] = psix[N - 1::-1]  # WF for x > 0 by reflection
    if (dpsi * psi[1] < 0.):  # dpsi/dx changes sign
        info.text = 'Energy found, E=%5.4f' % (E - dE / 2)
        vpm.pause(scene)  # any key to continue
    else:
        info.text = 'E=%5.3f' % (E)
    wf.move(xa, 2 * psix / max(psix), z), vpm.wait(scene), vp.rate(2000)
    dpsi = psi[1]  # old dpsi/dx at E
    E += dE
Exemple #11
0
    amnt = amn0*np.outer(phase, phase)      # $a_{mn}(t)=a_{mn}(0)e^{-i E_{mn} t}$
    for m in range(N):
        s = 0.0
        for n in range(N): s += amnt[m,n]*uny[n]    # vector operation
        wf += s*umx[m]                      # $\sum a_{mn} u_m(x) u_n(y)$
    return wf
    
t, num, plot = 0., 1, False         # set plot=False to animate forever
time = [0.0, 0.5, 0.9, 1.4, 2.0, 3.0, 40, 63.7, 64.2]   # snapshots
a, N, En, amn0, X, Y, umx, uny = initialize()
    
scene = vp.display(background=(.2,.5,1), center=(a/2,a/2,-0.5),
                   up=(0,0,1), forward=(1,2,-1))
mesh = vpm.mesh(X, Y, 0*X, vp.color.yellow, vp.color.red)
info = vp.label(pos=(a/4, .8*a,1), height=20)
while True:
    wf = psi(amn0, t)
    mesh.move(X, Y, wf.real*3)      # show real part, times 3
    info.text='%5.2f' %(t)
    vpm.wait(scene), vp.rate(40)
    if (plot):
        plt.subplot(3, 3, num)
        plt.imshow(np.abs(wf)**2, cmap=plt.cm.jet)  # try contourf()
        plt.xticks([],[]), plt.yticks([],[])        # omit ticks 
        plt.xlabel('t=%s' %(t))
        if (num > len(time)-1): break
        t, num = time[num], num+1
    else:
        t = t + 0.05
if (plot): plt.show()
        wf += s * umx[m]  # $\sum a_{mn} u_m(x) u_n(y)$
    return wf


t, num, plot = 0., 1, False  # set plot=False to animate forever
time = [0.0, 0.5, 0.9, 1.4, 2.0, 3.0, 40, 63.7, 64.2]  # snapshots
a, N, En, amn0, X, Y, umx, uny = initialize()

scene = vp.display(background=(.2, .5, 1),
                   center=(a / 2, a / 2, -0.5),
                   up=(0, 0, 1),
                   forward=(1, 2, -1))
mesh = vpm.mesh(X, Y, 0 * X, vp.color.yellow, vp.color.red)
info = vp.label(pos=(a / 4, .8 * a, 1), height=20)
while True:
    wf = psi(amn0, t)
    mesh.move(X, Y, wf.real * 3)  # show real part, times 3
    info.text = '%5.2f' % (t)
    vpm.wait(scene), vp.rate(40)
    if (plot):
        plt.subplot(3, 3, num)
        plt.imshow(np.abs(wf)**2, cmap=plt.cm.jet)  # try contourf()
        plt.xticks([], []), plt.yticks([], [])  # omit ticks
        plt.xlabel('t=%s' % (t))
        if (num > len(time) - 1): break
        t, num = time[num], num + 1
    else:
        t = t + 0.05
if (plot):
    plt.show()
Exemple #13
0
    c = 1.0/np.sqrt(s*np.sqrt(np.pi))
    return c*np.exp(-((x-x0)/s)**2/2)

def initialize(a, b, N):        # set parameters
    x = np.linspace(a, b, N+1)  # grid points
    V = 0.5*x*x                 # SHO potential
    s, x0  = 0.5, -5.0          # width (sigma), center of gaussian
    R, I = gaussian(s, x0, x), np.zeros(N+1)    # real, imag w.f.
    return x[1]-x[0], x,V,R,I   # grid size, h=x[1]-x[0]
    
a, b, N = -10., 10., 500        # space range [a,b], num. intervals
z, mag = np.zeros(N+1), 4       # zeros, magnifying factor

h, x, V, R, I = initialize(a, b, N)                 # initialization
scene = vp.display(background=(1,1,1), ambient=1)   # set scene
bars = vpm.bars(x, z, z, z, h, 0.05, (1,0,1))       # wave function
line = vpm.line(x, z, z, (1,0,1), 0.02)             
pot  = vpm.line(x, V*0.1, z, (0,0,0), 0.02)         # potential line

t, ic, cycle = 0.0, 0, 20       # t, animation cycle
dt = h*h*0.5                    # time step, dt < h*h
while True:
    R, I = ode.leapfrog(sch_eqn, R, I, t, dt)   # main work
    ic += 1
    if (ic % cycle == 0):       # animate
        pb = R*R + I*I          # probability
        line.move(x, mag*pb, z)
        bars.move(x, z, z, mag*pb)
    vp.rate(3000), vpm.wait(scene)

Exemple #14
0
    return c * np.exp(-((x - x0) / s)**2 / 2)


def initialize(a, b, N):  # set parameters
    x = np.linspace(a, b, N + 1)  # grid points
    V = 0.5 * x * x  # SHO potential
    s, x0 = 0.5, -5.0  # width (sigma), center of gaussian
    R, I = gaussian(s, x0, x), np.zeros(N + 1)  # real, imag w.f.
    return x[1] - x[0], x, V, R, I  # grid size, h=x[1]-x[0]


a, b, N = -10., 10., 500  # space range [a,b], num. intervals
z, mag = np.zeros(N + 1), 4  # zeros, magnifying factor

h, x, V, R, I = initialize(a, b, N)  # initialization
scene = vp.display(background=(1, 1, 1), ambient=1)  # set scene
bars = vpm.bars(x, z, z, z, h, 0.05, (1, 0, 1))  # wave function
line = vpm.line(x, z, z, (1, 0, 1), 0.02)
pot = vpm.line(x, V * 0.1, z, (0, 0, 0), 0.02)  # potential line

t, ic, cycle = 0.0, 0, 20  # t, animation cycle
dt = h * h * 0.5  # time step, dt < h*h
while True:
    R, I = ode.leapfrog(sch_eqn, R, I, t, dt)  # main work
    ic += 1
    if (ic % cycle == 0):  # animate
        pb = R * R + I * I  # probability
        line.move(x, mag * pb, z)
        bars.move(x, z, z, mag * pb)
    vp.rate(3000), vpm.wait(scene)