class MorphoLDA(TopicModel): def __init__(self, n_topics, n_docs, pattern_base, stem_base, analyses): super(MorphoLDA, self).__init__(n_topics) self.alpha = GammaPrior(1.0, 1.0, 1.0) self.document_topic = [DirichletMultinomial(n_topics, self.alpha) for _ in xrange(n_docs)] self.stem_base = stem_base self.pattern_model = PYP(pattern_base, PYPPrior(1.0, 1.0, 1.0, 1.0, 0.1, 1.0)) # G_p def make_topic_word(): stem_model = PYP(stem_base, PYPPrior(1.0, 1.0, 1.0, 1.0, 0.1, 1.0)) # G_s mp = MorphoProcess(stem_model, self.pattern_model, analyses) return PYP(mp, PYPPrior(1.0, 1.0, 1.0, 1.0, 0.1, 1.0)) # G_w self.topic_word = [make_topic_word() for _ in xrange(n_topics)] def log_likelihood(self): return (sum(d.log_likelihood() for d in self.document_topic) + self.alpha.log_likelihood() + sum(topic.log_likelihood() # G_w + topic.prior.log_likelihood() # d_w, T_w + topic.base.stem_model.log_likelihood() # G_s + topic.base.stem_model.prior.log_likelihood() # d_s, T_s for topic in self.topic_word) + self.pattern_model.log_likelihood(full=True) # G_p + ... + self.stem_base.log_likelihood(full=True)) # G_s^0 + ... def resample_hyperparemeters(self, n_iter): ar = stuple((0, 0)) logging.info('Resampling doc-topic hyperparameters') ar += self.alpha.resample(n_iter) logging.info('Resampling stem base / pattern model hyperparameters') ar += self.pattern_model.resample_hyperparemeters(n_iter) # G_p ar += self.pattern_model.base.resample_hyperparemeters(n_iter) # G_p^0 ar += self.stem_base.resample_hyperparemeters(n_iter) # G_s^0 logging.info('Resampling all topic-word PYP hyperparameters') for topic in self.topic_word: ar += topic.resample_hyperparemeters(n_iter) # G_w ar += topic.base.stem_model.resample_hyperparemeters(n_iter) # G_s return ar def __repr__(self): return ('MorphoLDA(#topics={self.n_topics} ' '| alpha={self.alpha}, beta=PYP(base=MP(stem ~ PYP(base={self.stem_base}); ' 'pattern ~ {self.pattern_model})))').format(self=self)
def __init__(self, n_topics, n_docs, pattern_base, stem_base, analyses): super(MorphoLDA, self).__init__(n_topics) self.alpha = GammaPrior(1.0, 1.0, 1.0) self.document_topic = [DirichletMultinomial(n_topics, self.alpha) for _ in xrange(n_docs)] self.stem_base = stem_base self.pattern_model = PYP(pattern_base, PYPPrior(1.0, 1.0, 1.0, 1.0, 0.1, 1.0)) # G_p def make_topic_word(): stem_model = PYP(stem_base, PYPPrior(1.0, 1.0, 1.0, 1.0, 0.1, 1.0)) # G_s mp = MorphoProcess(stem_model, self.pattern_model, analyses) return PYP(mp, PYPPrior(1.0, 1.0, 1.0, 1.0, 0.1, 1.0)) # G_w self.topic_word = [make_topic_word() for _ in xrange(n_topics)]