def polarHistogram( values, title="", bins=10, r1=0.25, r2=1, phigap=3, rgap=0.05, lpos=1, lsize=0.05, c=None, bc="k", alpha=1, cmap=None, deg=False, vmin=None, vmax=None, labels=(), showDisc=True, showLines=True, showAngles=True, showErrors=False, ): """ Polar histogram with errorbars. :param str title: histogram title :param int bins: number of bins in phi :param float r1: inner radius :param float r2: outer radius :param float phigap: gap angle btw 2 radial bars, in degrees :param float rgap: gap factor along radius of numeric angle labels :param float lpos: label gap factor along radius :param float lsize: label size :param c: color of the histogram bars, can be a list of length `bins`. :param bc: color of the frame and labels :param alpha: alpha of the frame :param str cmap: color map name :param bool deg: input array is in degrees :param float vmin: minimum value of the radial axis :param float vmax: maximum value of the radial axis :param list labels: list of labels, must be of length `bins` :param bool showDisc: show the outer ring axis :param bool showLines: show lines to the origin :param bool showAngles: show angular values :param bool showErrors: show error bars |polarHisto| |polarHisto.py|_ """ k = 180 / np.pi if deg: values = np.array(values) / k dp = np.pi / bins vals = [] for v in values: # normalize range t = np.arctan2(np.sin(v), np.cos(v)) if t < 0: t += 2 * np.pi vals.append(t - dp) histodata, edges = np.histogram(vals, bins=bins, range=(-dp, 2 * np.pi - dp)) thetas = [] for i in range(bins): thetas.append((edges[i] + edges[i + 1]) / 2) if vmin is None: vmin = np.min(histodata) if vmax is None: vmax = np.max(histodata) errors = np.sqrt(histodata) r2e = r1 + r2 if showErrors: r2e += np.max(errors) / vmax * 1.5 back = None if showDisc: back = shapes.Disc(r1=r2e, r2=r2e * 1.01, c=bc, res=1, resphi=360) back.z(-0.01).lighting(diffuse=0, ambient=1).alpha(alpha) slices = [] lines = [] angles = [] labs = [] errbars = [] for i, t in enumerate(thetas): r = histodata[i] / vmax * r2 d = shapes.Disc((0, 0, 0), r1, r1 + r, res=1, resphi=360) delta = dp - np.pi / 2 - phigap / k d.cutWithPlane(normal=(np.cos(t + delta), np.sin(t + delta), 0)) d.cutWithPlane(normal=(np.cos(t - delta), np.sin(t - delta), 0)) if cmap is not None: cslice = colors.colorMap(histodata[i], cmap, vmin, vmax) d.color(cslice) else: if c is None: d.color(i) elif utils.isSequence(c) and len(c) == bins: d.color(c[i]) else: d.color(c) slices.append(d) ct, st = np.cos(t), np.sin(t) if showErrors: showLines = False err = np.sqrt(histodata[i]) / vmax * r2 errl = shapes.Line( ((r1 + r - err) * ct, (r1 + r - err) * st, 0.01), ((r1 + r + err) * ct, (r1 + r + err) * st, 0.01), ) errl.alpha(alpha).lw(3).color(bc) errbars.append(errl) if showDisc: if showLines: l = shapes.Line((0, 0, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01)) lines.append(l) elif showAngles: # just the ticks l = shapes.Line( (r2e * ct * 0.98, r2e * st * 0.98, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01), ) lines.append(l) if showAngles: if 0 <= t < np.pi / 2: ju = "bottom-left" elif t == np.pi / 2: ju = "bottom-center" elif np.pi / 2 < t <= np.pi: ju = "bottom-right" elif np.pi < t < np.pi * 3 / 2: ju = "top-right" elif t == np.pi * 3 / 2: ju = "top-center" else: ju = "top-left" a = shapes.Text(int(t * k), pos=(0, 0, 0), s=lsize, depth=0, justify=ju) a.pos(r2e * ct * (1 + rgap), r2e * st * (1 + rgap), -0.01) angles.append(a) if len(labels) == bins: lab = shapes.Text(labels[i], (0, 0, 0), s=lsize, depth=0, justify="center") lab.pos(r2e * ct * (1 + rgap) * lpos / 2, r2e * st * (1 + rgap) * lpos / 2, 0.01) labs.append(lab) ti = None if title: ti = shapes.Text(title, (0, 0, 0), s=lsize * 2, depth=0, justify="top-center") ti.pos(0, -r2e * 1.15, 0.01) mrg = merge(back, lines, angles, labs, ti) if mrg: mrg.color(bc).alpha(alpha).lighting(diffuse=0, ambient=1) rh = Assembly(slices + errbars + [mrg]) rh.base = np.array([0, 0, 0]) rh.top = np.array([0, 0, 1]) return rh
def polarPlot( rphi, title="", r1=0, r2=1, lpos=1, lsize=0.03, c="blue", bc="k", alpha=1, lw=3, deg=False, vmax=None, fill=True, spline=True, smooth=0, showPoints=True, showDisc=True, showLines=True, showAngles=True, ): """ Polar/radar plot by splining a set of points in polar coordinates. Input is a list of polar angles and radii. :param str title: histogram title :param int bins: number of bins in phi :param float r1: inner radius :param float r2: outer radius :param float lsize: label size :param c: color of the line :param bc: color of the frame and labels :param alpha: alpha of the frame :param int lw: line width in pixels :param bool deg: input array is in degrees :param bool fill: fill convex area with solid color :param bool spline: interpolate the set of input points :param bool showPoints: show data points :param bool showDisc: show the outer ring axis :param bool showLines: show lines to the origin :param bool showAngles: show angular values |polarPlot| |polarPlot.py|_ """ if len(rphi) == 2: #rphi = list(zip(rphi[0], rphi[1])) rphi = np.stack((rphi[0], rphi[1]), axis=1) rphi = np.array(rphi) thetas = rphi[:, 0] radii = rphi[:, 1] k = 180 / np.pi if deg: thetas = np.array(thetas) / k vals = [] for v in thetas: # normalize range t = np.arctan2(np.sin(v), np.cos(v)) if t < 0: t += 2 * np.pi vals.append(t) thetas = np.array(vals) if vmax is None: vmax = np.max(radii) angles = [] labs = [] points = [] for i in range(len(thetas)): t = thetas[i] r = (radii[i]) / vmax * r2 + r1 ct, st = np.cos(t), np.sin(t) points.append([r * ct, r * st, 0]) p0 = points[0] points.append(p0) r2e = r1 + r2 if spline: lines = shapes.KSpline(points, closed=True) else: lines = shapes.Line(points) lines.c(c).lw(lw).alpha(alpha) points.pop() ptsact = None if showPoints: ptsact = shapes.Points(points).c(c).alpha(alpha) filling = None if fill: faces = [] coords = [[0, 0, 0]] + lines.coordinates().tolist() for i in range(1, lines.N()): faces.append([0, i, i + 1]) filling = Actor([coords, faces]).c(c).alpha(alpha) back = None if showDisc: back = shapes.Disc(r1=r2e, r2=r2e * 1.01, c=bc, res=1, resphi=360) back.z(-0.01).lighting(diffuse=0, ambient=1).alpha(alpha) ti = None if title: ti = shapes.Text(title, (0, 0, 0), s=lsize * 2, depth=0, justify="top-center") ti.pos(0, -r2e * 1.15, 0.01) rays = [] if showDisc: rgap = 0.05 for t in np.linspace(0, 2 * np.pi, num=8, endpoint=False): ct, st = np.cos(t), np.sin(t) if showLines: l = shapes.Line((0, 0, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01)) rays.append(l) elif showAngles: # just the ticks l = shapes.Line( (r2e * ct * 0.98, r2e * st * 0.98, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01), ) if showAngles: if 0 <= t < np.pi / 2: ju = "bottom-left" elif t == np.pi / 2: ju = "bottom-center" elif np.pi / 2 < t <= np.pi: ju = "bottom-right" elif np.pi < t < np.pi * 3 / 2: ju = "top-right" elif t == np.pi * 3 / 2: ju = "top-center" else: ju = "top-left" a = shapes.Text(int(t * k), pos=(0, 0, 0), s=lsize, depth=0, justify=ju) a.pos(r2e * ct * (1 + rgap), r2e * st * (1 + rgap), -0.01) angles.append(a) mrg = merge(back, angles, rays, labs, ti) if mrg: mrg.color(bc).alpha(alpha).lighting(diffuse=0, ambient=1) rh = Assembly([lines, ptsact, filling] + [mrg]) rh.base = np.array([0, 0, 0]) rh.top = np.array([0, 0, 1]) return rh
def plotxy( data, xerrors=None, yerrors=None, xlimits=None, ylimits=None, xscale=1, yscale=None, xlogscale=False, ylogscale=False, c="k", alpha=1, xtitle="x", ytitle="y", title="", titleSize=None, ec=None, lc="k", lw=2, line=True, dashed=False, splined=False, marker=None, ms=None, mc=None, ma=None, ): """Draw a 2D plot of variable x vs y. :param list data: input format can be [allx, ally] or [(x1,y1), (x2,y2), ...] :param list xerrors: set uncertainties for the x variable, shown as error bars. :param list yerrors: set uncertainties for the y variable, shown as error bars. :param list xlimits: set limits to the range for the x variable :param list ylimits: set limits to the range for the y variable :param float xscale: set scaling factor in x. Default is 1. :param float yscale: set scaling factor in y. Automatically calculated to get a reasonable aspect ratio. Scaling factor is saved in `info['yscale']`. :param bool xlogscale: set x logarithmic scale. :param bool ylogscale: set y logarithmic scale. :param str c: color of frame and text. :param float alpha: opacity of frame and text. :param str xtitle: title label along x-axis. :param str ytitle: title label along y-axis. :param str title: histogram title on top. :param float titleSize: size of title :param str ec: color of error bar, by default the same as marker color :param str lc: color of line :param float lw: width of line :param bool line: join points with line :param bool dashed: use a dashed line style :param bool splined: spline the line joining the point as a countinous curve :param str,int marker: use a marker shape for the data points :param float ms: marker size. :param str mc: color of marker :param float ma: opacity of marker |plotxy| |plotxy.py|_ """ if len(data) == 2 and len(data[0]) > 1 and len(data[0]) == len(data[1]): #format is [allx, ally], convert it: data = np.c_[data[0], data[1]] if xlimits is not None: cdata = [] x0lim = xlimits[0] x1lim = xlimits[1] for d in data: if d[0] > x0lim and d[0] < x1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within xlimits", c=1) return None if ylimits is not None: cdata = [] y0lim = ylimits[0] y1lim = ylimits[1] for d in data: if d[1] > y0lim and d[1] < y1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within ylimits", c=1) return None data = np.array(data)[:, [0, 1]] if xlogscale: data[:, 0] = np.log(data[:, 0]) if ylogscale: data[:, 1] = np.log(data[:, 1]) x0, y0 = np.min(data, axis=0) x1, y1 = np.max(data, axis=0) if yscale is None: yscale = (x1 - x0) / (y1 - y0) * 0.75 # default 3/4 aspect ratio yscale = float(utils.precision(yscale, 1)) if abs(yscale - 1) > 0.2: ytitle += " *" + str(yscale) y0 *= yscale y1 *= yscale else: yscale = 1 scale = np.array([[xscale, yscale]]) data = np.multiply(data, scale) acts = [] if dashed: l = shapes.DashedLine(data, lw=lw, spacing=20) acts.append(l) elif splined: l = shapes.KSpline(data).lw(lw).c(lc) acts.append(l) elif line: l = shapes.Line(data, lw=lw, c=lc) acts.append(l) if marker: if ms is None: ms = (x1 - x0) / 75.0 if mc is None: mc = lc mk = shapes.Marker(marker, s=ms, alpha=ma) pts = shapes.Points(data) marked = shapes.Glyph(pts, glyphObj=mk, c=mc) acts.append(marked) if ec is None: if mc is not None: ec = mc else: ec = lc offs = (x1 - x0) / 1000 if yerrors is not None: if len(yerrors) != len(data): colors.printc( "Error in plotxy(yerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] yerr = yerrors[i] / 2 * yscale errs.append( shapes.Line((xval, yval - yerr, offs), (xval, yval + yerr, offs))) myerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(myerrs) if xerrors is not None: if len(xerrors) != len(data): colors.printc( "Error in plotxy(xerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] xerr = xerrors[i] / 2 errs.append( shapes.Line((xval - xerr, yval, offs), (xval + xerr, yval, offs))) mxerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(mxerrs) x0lim = x0 x1lim = x1 y0lim = y0 * yscale y1lim = y1 * yscale if xlimits is not None or ylimits is not None: if xlimits is not None: x0lim = min(xlimits[0], x0) x1lim = max(xlimits[1], x1) if ylimits is not None: y0lim = min(ylimits[0] * yscale, y0) y1lim = max(ylimits[1] * yscale, y1) rec = shapes.Rectangle([x0lim, y0lim, 0], [x1lim, y1lim, 0]) rec.alpha(0).wireframe() acts.append(rec) if title: if titleSize is None: titleSize = (x1lim - x0lim) / 40.0 tit = shapes.Text( title, s=titleSize, c=c, depth=0, alpha=alpha, pos=((x1lim + x0lim) / 2.0, y1lim, 0), justify="bottom-center", ) tit.pickable(False) acts.append(tit) settings.xtitle = xtitle settings.ytitle = ytitle asse = Assembly(acts) asse.info["yscale"] = yscale return asse