def load3DS(filename): """Load ``3DS`` file format from file. Return an ``Assembly(vtkAssembly)`` object.""" renderer = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(renderer) importer = vtk.vtk3DSImporter() importer.SetFileName(filename) importer.ComputeNormalsOn() importer.SetRenderWindow(renWin) importer.Update() actors = renderer.GetActors() # vtkActorCollection acts = [] for i in range(actors.GetNumberOfItems()): a = actors.GetItemAsObject(i) acts.append(a) del renWin return Assembly(acts)
def loadNumpy(inobj): """Load a vtkplotter format file.""" if isinstance(inobj, str): data = np.load(inobj, allow_pickle=True, encoding='latin1') else: data = inobj def loadcommon(obj, d): keys = d.keys() if 'time' in keys: obj.time(d['time']) if 'transform' in keys and len(d['transform']) == 4: vm = vtk.vtkMatrix4x4() for i in [0, 1, 2, 3]: for j in [0, 1, 2, 3]: vm.SetElement(i, j, d['transform'][i,j]) obj.setTransform(vm) elif 'position' in keys: obj.pos(d['position']) if hasattr(obj, 'GetProperty'): prp = obj.GetProperty() if 'ambient' in keys: prp.SetAmbient(d['ambient']) if 'diffuse' in keys: prp.SetDiffuse(d['diffuse']) ################## def _buildactor(d): #print('_buildactor', d) vertices = d['points'] if not len(vertices): return None cells = None lines = None keys = d.keys() if 'cells' in keys: cells = d['cells'] if 'lines' in keys: lines = d['lines'] poly = utils.buildPolyData(vertices, cells, lines) act = Mesh(poly) loadcommon(act, d) act.mapper().ScalarVisibilityOff() if 'celldata' in keys: for csc, cscname in d['celldata']: act.addCellScalars(csc, cscname) if 'normal' not in cscname.lower(): act.getCellArray(cscname) # activate if 'pointdata' in keys: for psc, pscname in d['pointdata']: act.addPointScalars(psc, pscname) if 'normal' not in pscname.lower(): act.getPointArray(pscname) # activate prp = act.GetProperty() if 'specular' in keys: prp.SetSpecular(d['specular']) if 'specularpower' in keys: prp.SetSpecularPower(d['specularpower']) if 'specularcolor' in keys: prp.SetSpecularColor(d['specularcolor']) if 'shading' in keys: prp.SetInterpolation(d['shading']) if 'alpha' in keys: prp.SetOpacity(d['alpha']) if 'opacity' in keys: prp.SetOpacity(d['opacity']) # synonym if 'pointsize' in keys and d['pointsize']: prp.SetPointSize(d['pointsize']) if 'texture' in keys and d['texture']: act.texture(d['texture']) if 'linewidth' in keys and d['linewidth']: act.lineWidth(d['linewidth']) if 'linecolor' in keys and d['linecolor']: act.lineColor(d['linecolor']) if 'representation' in keys: prp.SetRepresentation(d['representation']) if 'color' in keys and d['color']: act.color(d['color']) if 'backColor' in keys and d['backColor']: act.backColor(d['backColor']) if 'activedata' in keys and d['activedata'] is not None: act.mapper().ScalarVisibilityOn() if d['activedata'][0] == 'celldata': poly.GetCellData().SetActiveScalars(d['activedata'][1]) if d['activedata'][0] == 'pointdata': poly.GetPointData().SetActiveScalars(d['activedata'][1]) return act ################## objs = [] for d in data: #print('loadNumpy:', d) if 'mesh' == d['type']: a = _buildactor(d) if a: objs.append(a) elif 'assembly' == d['type']: assacts = [] for ad in d['actors']: assacts.append(_buildactor(ad)) asse = Assembly(assacts) loadcommon(asse, d) objs.append(asse) elif 'image' == d['type']: shp = d['shape'][1], d['shape'][0] arr0 = d['array'] rcv = arr0[:,0].reshape(shp) gcv = arr0[:,1].reshape(shp) bcv = arr0[:,2].reshape(shp) arr = np.array([rcv, gcv, bcv]) arr = np.swapaxes(arr, 0, 2) vimg = Picture(arr) loadcommon(vimg, d) objs.append(vimg) elif 'volume' == d['type']: vol = Volume(d['array']) loadcommon(vol, d) vol.jittering(d['jittering']) vol.mode(d['mode']) vol.color(d['color']) vol.alpha(d['alpha']) vol.alphaGradient(d['alphagrad']) objs.append(vol) if len(objs) == 1: return objs[0] elif len(objs) == 0: return None else: return objs
def _load_file(filename, c, alpha, threshold, spacing, unpack): fl = filename.lower() ################################################################# other formats: if fl.endswith(".xml") or fl.endswith(".xml.gz") or fl.endswith(".xdmf"): # Fenics tetrahedral file actor = loadDolfin(filename) elif fl.endswith(".neutral") or fl.endswith(".neu"): # neutral tetrahedral file actor = loadNeutral(filename) elif fl.endswith(".gmsh"): # gmesh file actor = loadGmesh(filename) elif fl.endswith(".pcd"): # PCL point-cloud format actor = loadPCD(filename) actor.GetProperty().SetPointSize(2) elif fl.endswith(".off"): actor = loadOFF(filename) elif fl.endswith(".3ds"): # 3ds format actor = load3DS(filename) elif fl.endswith(".wrl"): importer = vtk.vtkVRMLImporter() importer.SetFileName(filename) importer.Read() importer.Update() actors = importer.GetRenderer().GetActors() #vtkActorCollection actors.InitTraversal() wacts = [] for i in range(actors.GetNumberOfItems()): act = actors.GetNextActor() wacts.append(act) actor = Assembly(wacts) ################################################################# volumetric: elif fl.endswith(".tif") or fl.endswith(".slc") or fl.endswith(".vti") \ or fl.endswith(".mhd") or fl.endswith(".nrrd") or fl.endswith(".nii") \ or fl.endswith(".dem"): img = loadImageData(filename, spacing) if threshold is False: if c is None and alpha == 1: c = ['b','lb','lg','y','r'] # good for blackboard background alpha = (0.0, 0.0, 0.2, 0.4, 0.8, 1) actor = Volume(img) else: actor = Volume(img).isosurface(threshold=threshold) actor.color(c).alpha(alpha) ################################################################# 2D images: elif fl.endswith(".png") or fl.endswith(".jpg") or fl.endswith(".bmp") or fl.endswith(".jpeg"): if ".png" in fl: picr = vtk.vtkPNGReader() elif ".jpg" in fl or ".jpeg" in fl: picr = vtk.vtkJPEGReader() elif ".bmp" in fl: picr = vtk.vtkBMPReader() picr.SetFileName(filename) picr.Update() actor = Picture() # object derived from vtk.vtkImageActor() actor.SetInputData(picr.GetOutput()) if alpha is None: alpha = 1 actor.SetOpacity(alpha) ################################################################# multiblock: elif fl.endswith(".vtm") or fl.endswith(".vtmb"): read = vtk.vtkXMLMultiBlockDataReader() read.SetFileName(filename) read.Update() mb = read.GetOutput() if unpack: acts = [] for i in range(mb.GetNumberOfBlocks()): b = mb.GetBlock(i) if isinstance(b, (vtk.vtkPolyData, vtk.vtkUnstructuredGrid, vtk.vtkStructuredGrid, vtk.vtkRectilinearGrid)): acts.append(Mesh(b, c=c, alpha=alpha)) if isinstance(b, vtk.vtkImageData): acts.append(Volume(b)) return acts else: return mb ################################################################# numpy: elif fl.endswith(".npy"): acts = loadNumpy(filename) if unpack is False: return Assembly(acts) return acts elif fl.endswith(".geojson") or fl.endswith(".geojson.gz"): return loadGeoJSON(fl) elif fl.endswith(".pvd"): return loadPVD(fl) elif fl.endswith(".pdb"): return loadPDB(fl) ################################################################# polygonal mesh: else: if fl.endswith(".vtk"): # read all legacy vtk types #output can be: # PolyData, StructuredGrid, StructuredPoints, UnstructuredGrid, RectilinearGrid reader = vtk.vtkDataSetReader() reader.ReadAllScalarsOn() reader.ReadAllVectorsOn() reader.ReadAllTensorsOn() reader.ReadAllFieldsOn() reader.ReadAllNormalsOn() reader.ReadAllColorScalarsOn() elif fl.endswith(".ply"): reader = vtk.vtkPLYReader() elif fl.endswith(".obj"): reader = vtk.vtkOBJReader() elif fl.endswith(".stl"): reader = vtk.vtkSTLReader() elif fl.endswith(".byu") or fl.endswith(".g"): reader = vtk.vtkBYUReader() elif fl.endswith(".foam"): # OpenFoam reader = vtk.vtkOpenFOAMReader() elif fl.endswith(".pvd"): reader = vtk.vtkXMLGenericDataObjectReader() elif fl.endswith(".vtp"): reader = vtk.vtkXMLPolyDataReader() elif fl.endswith(".vts"): reader = vtk.vtkXMLStructuredGridReader() elif fl.endswith(".vtu"): reader = vtk.vtkXMLUnstructuredGridReader() elif fl.endswith(".vtr"): reader = vtk.vtkXMLRectilinearGridReader() elif fl.endswith(".pvtk"): reader = vtk.vtkPDataSetReader() elif fl.endswith(".pvtr"): reader = vtk.vtkXMLPRectilinearGridReader() elif fl.endswith("pvtu"): reader = vtk.vtkXMLPUnstructuredGridReader() elif fl.endswith(".txt") or fl.endswith(".xyz"): reader = vtk.vtkParticleReader() # (format is x, y, z, scalar) elif fl.endswith(".facet"): reader = vtk.vtkFacetReader() else: return None reader.SetFileName(filename) reader.Update() routput = reader.GetOutput() if not routput: colors.printc("~noentry Unable to load", filename, c=1) return None actor = Mesh(routput, c, alpha) if fl.endswith(".txt") or fl.endswith(".xyz"): actor.GetProperty().SetPointSize(4) actor.filename = filename return actor
def fxy( z="sin(3*x)*log(x-y)/3", x=(0, 3), y=(0, 3), zlimits=(None, None), showNan=True, zlevels=10, c="b", bc="aqua", alpha=1, texture="paper", res=(100, 100), ): """ Build a surface representing the function :math:`f(x,y)` specified as a string or as a reference to an external function. :param float x: x range of values. :param float y: y range of values. :param float zlimits: limit the z range of the independent variable. :param int zlevels: will draw the specified number of z-levels contour lines. :param bool showNan: show where the function does not exist as red points. :param list res: resolution in x and y. |fxy| |fxy.py|_ Function is: :math:`f(x,y)=\sin(3x) \cdot \log(x-y)/3` in range :math:`x=[0,3], y=[0,3]`. """ if isinstance(z, str): try: z = z.replace("math.", "").replace("np.", "") namespace = locals() code = "from math import*\ndef zfunc(x,y): return " + z exec(code, namespace) z = namespace["zfunc"] except: colors.printc("Syntax Error in fxy()", c=1) return None ps = vtk.vtkPlaneSource() ps.SetResolution(res[0], res[1]) ps.SetNormal([0, 0, 1]) ps.Update() poly = ps.GetOutput() dx = x[1] - x[0] dy = y[1] - y[0] todel, nans = [], [] for i in range(poly.GetNumberOfPoints()): px, py, _ = poly.GetPoint(i) xv = (px + 0.5) * dx + x[0] yv = (py + 0.5) * dy + y[0] try: zv = z(xv, yv) except: zv = 0 todel.append(i) nans.append([xv, yv, 0]) poly.GetPoints().SetPoint(i, [xv, yv, zv]) if len(todel): cellIds = vtk.vtkIdList() poly.BuildLinks() for i in todel: poly.GetPointCells(i, cellIds) for j in range(cellIds.GetNumberOfIds()): poly.DeleteCell(cellIds.GetId(j)) # flag cell poly.RemoveDeletedCells() cl = vtk.vtkCleanPolyData() cl.SetInputData(poly) cl.Update() poly = cl.GetOutput() if not poly.GetNumberOfPoints(): colors.printc("Function is not real in the domain", c=1) return None if zlimits[0]: tmpact1 = Mesh(poly) a = tmpact1.cutWithPlane((0, 0, zlimits[0]), (0, 0, 1)) poly = a.polydata() if zlimits[1]: tmpact2 = Mesh(poly) a = tmpact2.cutWithPlane((0, 0, zlimits[1]), (0, 0, -1)) poly = a.polydata() if c is None: elev = vtk.vtkElevationFilter() elev.SetInputData(poly) elev.Update() poly = elev.GetOutput() mesh = Mesh(poly, c, alpha).computeNormals().lighting("plastic") if c is None: mesh.getPointArray("Elevation") if bc: mesh.bc(bc) mesh.texture(texture) acts = [mesh] if zlevels: elevation = vtk.vtkElevationFilter() elevation.SetInputData(poly) bounds = poly.GetBounds() elevation.SetLowPoint(0, 0, bounds[4]) elevation.SetHighPoint(0, 0, bounds[5]) elevation.Update() bcf = vtk.vtkBandedPolyDataContourFilter() bcf.SetInputData(elevation.GetOutput()) bcf.SetScalarModeToValue() bcf.GenerateContourEdgesOn() bcf.GenerateValues(zlevels, elevation.GetScalarRange()) bcf.Update() zpoly = bcf.GetContourEdgesOutput() zbandsact = Mesh(zpoly, "k", alpha).lw(0.5) acts.append(zbandsact) if showNan and len(todel): bb = mesh.GetBounds() if bb[4] <= 0 and bb[5] >= 0: zm = 0.0 else: zm = (bb[4] + bb[5]) / 2 nans = np.array(nans) + [0, 0, zm] nansact = shapes.Points(nans, r=2, c="red", alpha=alpha) nansact.GetProperty().RenderPointsAsSpheresOff() acts.append(nansact) if len(acts) > 1: return Assembly(acts) else: return mesh
def trimesh2vtk(inputobj, alphaPerCell=False): """ Convert ``Trimesh`` object to ``Mesh(vtkActor)`` or ``Assembly`` object. """ if isSequence(inputobj): vms = [] for ob in inputobj: vms.append(trimesh2vtk(ob)) return vms # print('trimesh2vtk inputobj', type(inputobj)) inputobj_type = str(type(inputobj)) if "Trimesh" in inputobj_type or "primitives" in inputobj_type: from vtkplotter import Mesh faces = inputobj.faces poly = buildPolyData(inputobj.vertices, faces) tact = Mesh(poly) if inputobj.visual.kind == "face": trim_c = inputobj.visual.face_colors else: trim_c = inputobj.visual.vertex_colors if isSequence(trim_c): if isSequence(trim_c[0]): sameColor = len(np.unique(trim_c, axis=0)) < 2 # all vtxs have same color trim_c = trim_c/255 if sameColor: tact.c(trim_c[0, [0,1,2]]).alpha(trim_c[0, 3]) else: if inputobj.visual.kind == "face": tact.cellColors(trim_c[:, [0,1,2]], mode='colors', alpha=trim_c[:,3], alphaPerCell=alphaPerCell) else: tact.pointColors(trim_c[:, [0,1,2]], mode='colors', alpha=trim_c[3]) return tact elif "PointCloud" in inputobj_type: from vtkplotter.shapes import Points trim_cc, trim_al = "black", 1 if hasattr(inputobj, "vertices_color"): trim_c = inputobj.vertices_color if len(trim_c): trim_cc = trim_c[:, [0, 1, 2]] / 255 trim_al = trim_c[:, 3] / 255 trim_al = np.sum(trim_al) / len(trim_al) # just the average return Points(inputobj.vertices, r=8, c=trim_cc, alpha=trim_al) elif "path" in inputobj_type: from vtkplotter.shapes import Line from vtkplotter.assembly import Assembly lines = [] for e in inputobj.entities: # print('trimesh entity', e.to_dict()) l = Line(inputobj.vertices[e.points], c="k", lw=2) lines.append(l) return Assembly(lines) return None
def polarPlot( rphi, title="", r1=0, r2=1, lpos=1, lsize=0.03, c="blue", bc="k", alpha=1, lw=3, deg=False, vmax=None, fill=True, spline=True, smooth=0, showPoints=True, showDisc=True, showLines=True, showAngles=True, ): """ Polar/radar plot by splining a set of points in polar coordinates. Input is a list of polar angles and radii. :param str title: histogram title :param int bins: number of bins in phi :param float r1: inner radius :param float r2: outer radius :param float lsize: label size :param c: color of the line :param bc: color of the frame and labels :param alpha: alpha of the frame :param int lw: line width in pixels :param bool deg: input array is in degrees :param bool fill: fill convex area with solid color :param bool spline: interpolate the set of input points :param bool showPoints: show data points :param bool showDisc: show the outer ring axis :param bool showLines: show lines to the origin :param bool showAngles: show angular values |polarPlot| |polarPlot.py|_ """ if len(rphi) == 2: #rphi = list(zip(rphi[0], rphi[1])) rphi = np.stack((rphi[0], rphi[1]), axis=1) rphi = np.array(rphi) thetas = rphi[:, 0] radii = rphi[:, 1] k = 180 / np.pi if deg: thetas = np.array(thetas) / k vals = [] for v in thetas: # normalize range t = np.arctan2(np.sin(v), np.cos(v)) if t < 0: t += 2 * np.pi vals.append(t) thetas = np.array(vals) if vmax is None: vmax = np.max(radii) angles = [] labs = [] points = [] for i in range(len(thetas)): t = thetas[i] r = (radii[i]) / vmax * r2 + r1 ct, st = np.cos(t), np.sin(t) points.append([r * ct, r * st, 0]) p0 = points[0] points.append(p0) r2e = r1 + r2 if spline: lines = shapes.KSpline(points, closed=True) else: lines = shapes.Line(points) lines.c(c).lw(lw).alpha(alpha) points.pop() ptsact = None if showPoints: ptsact = shapes.Points(points).c(c).alpha(alpha) filling = None if fill: faces = [] coords = [[0, 0, 0]] + lines.points().tolist() for i in range(1, lines.N()): faces.append([0, i, i + 1]) filling = Mesh([coords, faces]).c(c).alpha(alpha) back = None if showDisc: back = shapes.Disc(r1=r2e, r2=r2e * 1.01, c=bc, res=1, resphi=360) back.z(-0.01).lighting(diffuse=0, ambient=1).alpha(alpha) ti = None if title: ti = shapes.Text(title, (0, 0, 0), s=lsize * 2, depth=0, justify="top-center") ti.pos(0, -r2e * 1.15, 0.01) rays = [] if showDisc: rgap = 0.05 for t in np.linspace(0, 2 * np.pi, num=8, endpoint=False): ct, st = np.cos(t), np.sin(t) if showLines: l = shapes.Line((0, 0, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01)) rays.append(l) elif showAngles: # just the ticks l = shapes.Line( (r2e * ct * 0.98, r2e * st * 0.98, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01), ) if showAngles: if 0 <= t < np.pi / 2: ju = "bottom-left" elif t == np.pi / 2: ju = "bottom-center" elif np.pi / 2 < t <= np.pi: ju = "bottom-right" elif np.pi < t < np.pi * 3 / 2: ju = "top-right" elif t == np.pi * 3 / 2: ju = "top-center" else: ju = "top-left" a = shapes.Text(int(t * k), pos=(0, 0, 0), s=lsize, depth=0, justify=ju) a.pos(r2e * ct * (1 + rgap), r2e * st * (1 + rgap), -0.01) angles.append(a) mrg = merge(back, angles, rays, labs, ti) if mrg: mrg.color(bc).alpha(alpha).lighting(diffuse=0, ambient=1) rh = Assembly([lines, ptsact, filling] + [mrg]) rh.base = np.array([0, 0, 0]) rh.top = np.array([0, 0, 1]) return rh
def polarHistogram( values, title="", bins=10, r1=0.25, r2=1, phigap=3, rgap=0.05, lpos=1, lsize=0.05, c=None, bc="k", alpha=1, cmap=None, deg=False, vmin=None, vmax=None, labels=(), showDisc=True, showLines=True, showAngles=True, showErrors=False, ): """ Polar histogram with errorbars. :param str title: histogram title :param int bins: number of bins in phi :param float r1: inner radius :param float r2: outer radius :param float phigap: gap angle btw 2 radial bars, in degrees :param float rgap: gap factor along radius of numeric angle labels :param float lpos: label gap factor along radius :param float lsize: label size :param c: color of the histogram bars, can be a list of length `bins`. :param bc: color of the frame and labels :param alpha: alpha of the frame :param str cmap: color map name :param bool deg: input array is in degrees :param float vmin: minimum value of the radial axis :param float vmax: maximum value of the radial axis :param list labels: list of labels, must be of length `bins` :param bool showDisc: show the outer ring axis :param bool showLines: show lines to the origin :param bool showAngles: show angular values :param bool showErrors: show error bars |polarHisto| |polarHisto.py|_ """ k = 180 / np.pi if deg: values = np.array(values) / k dp = np.pi / bins vals = [] for v in values: # normalize range t = np.arctan2(np.sin(v), np.cos(v)) if t < 0: t += 2 * np.pi vals.append(t - dp) histodata, edges = np.histogram(vals, bins=bins, range=(-dp, 2 * np.pi - dp)) thetas = [] for i in range(bins): thetas.append((edges[i] + edges[i + 1]) / 2) if vmin is None: vmin = np.min(histodata) if vmax is None: vmax = np.max(histodata) errors = np.sqrt(histodata) r2e = r1 + r2 if showErrors: r2e += np.max(errors) / vmax * 1.5 back = None if showDisc: back = shapes.Disc(r1=r2e, r2=r2e * 1.01, c=bc, res=1, resphi=360) back.z(-0.01).lighting(diffuse=0, ambient=1).alpha(alpha) slices = [] lines = [] angles = [] labs = [] errbars = [] for i, t in enumerate(thetas): r = histodata[i] / vmax * r2 d = shapes.Disc((0, 0, 0), r1, r1 + r, res=1, resphi=360) delta = dp - np.pi / 2 - phigap / k d.cutWithPlane(normal=(np.cos(t + delta), np.sin(t + delta), 0)) d.cutWithPlane(normal=(np.cos(t - delta), np.sin(t - delta), 0)) if cmap is not None: cslice = colors.colorMap(histodata[i], cmap, vmin, vmax) d.color(cslice) else: if c is None: d.color(i) elif utils.isSequence(c) and len(c) == bins: d.color(c[i]) else: d.color(c) slices.append(d) ct, st = np.cos(t), np.sin(t) if showErrors: showLines = False err = np.sqrt(histodata[i]) / vmax * r2 errl = shapes.Line( ((r1 + r - err) * ct, (r1 + r - err) * st, 0.01), ((r1 + r + err) * ct, (r1 + r + err) * st, 0.01), ) errl.alpha(alpha).lw(3).color(bc) errbars.append(errl) if showDisc: if showLines: l = shapes.Line((0, 0, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01)) lines.append(l) elif showAngles: # just the ticks l = shapes.Line( (r2e * ct * 0.98, r2e * st * 0.98, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01), ) lines.append(l) if showAngles: if 0 <= t < np.pi / 2: ju = "bottom-left" elif t == np.pi / 2: ju = "bottom-center" elif np.pi / 2 < t <= np.pi: ju = "bottom-right" elif np.pi < t < np.pi * 3 / 2: ju = "top-right" elif t == np.pi * 3 / 2: ju = "top-center" else: ju = "top-left" a = shapes.Text(int(t * k), pos=(0, 0, 0), s=lsize, depth=0, justify=ju) a.pos(r2e * ct * (1 + rgap), r2e * st * (1 + rgap), -0.01) angles.append(a) if len(labels) == bins: lab = shapes.Text(labels[i], (0, 0, 0), s=lsize, depth=0, justify="center") lab.pos(r2e * ct * (1 + rgap) * lpos / 2, r2e * st * (1 + rgap) * lpos / 2, 0.01) labs.append(lab) ti = None if title: ti = shapes.Text(title, (0, 0, 0), s=lsize * 2, depth=0, justify="top-center") ti.pos(0, -r2e * 1.15, 0.01) mrg = merge(back, lines, angles, labs, ti) if mrg: mrg.color(bc).alpha(alpha).lighting(diffuse=0, ambient=1) rh = Assembly(slices + errbars + [mrg]) rh.base = np.array([0, 0, 0]) rh.top = np.array([0, 0, 1]) return rh
def hexHistogram( xvalues, yvalues, xtitle="", ytitle="", ztitle="", bins=12, norm=1, fill=True, c=None, cmap="terrain_r", alpha=1, ): """ Build a hexagonal histogram from a list of x and y values. :param bool bins: nr of bins for the smaller range in x or y. :param float norm: sets a scaling factor for the z axis (freq. axis). :param bool fill: draw solid hexagons. :param str cmap: color map name for elevation. |histoHexagonal| |histoHexagonal.py|_ """ if xtitle: from vtkplotter import settings settings.xtitle = xtitle if ytitle: from vtkplotter import settings settings.ytitle = ytitle if ztitle: from vtkplotter import settings settings.ztitle = ztitle xmin, xmax = np.min(xvalues), np.max(xvalues) ymin, ymax = np.min(yvalues), np.max(yvalues) dx, dy = xmax - xmin, ymax - ymin if xmax - xmin < ymax - ymin: n = bins m = np.rint(dy / dx * n / 1.2 + 0.5).astype(int) else: m = bins n = np.rint(dx / dy * m * 1.2 + 0.5).astype(int) src = vtk.vtkPointSource() src.SetNumberOfPoints(len(xvalues)) src.Update() pointsPolydata = src.GetOutput() #values = list(zip(xvalues, yvalues)) values = np.stack((xvalues, yvalues), axis=1) zs = [[0.0]] * len(values) values = np.append(values, zs, axis=1) pointsPolydata.GetPoints().SetData(numpy_to_vtk(values, deep=True)) cloud = Mesh(pointsPolydata) col = None if c is not None: col = colors.getColor(c) hexs, binmax = [], 0 ki, kj = 1.33, 1.12 r = 0.47 / n * 1.2 * dx for i in range(n + 3): for j in range(m + 2): cyl = vtk.vtkCylinderSource() cyl.SetResolution(6) cyl.CappingOn() cyl.SetRadius(0.5) cyl.SetHeight(0.1) cyl.Update() t = vtk.vtkTransform() if not i % 2: p = (i / ki, j / kj, 0) else: p = (i / ki, j / kj + 0.45, 0) q = (p[0] / n * 1.2 * dx + xmin, p[1] / m * dy + ymin, 0) ids = cloud.closestPoint(q, radius=r, returnIds=True) ne = len(ids) if fill: t.Translate(p[0], p[1], ne / 2) t.Scale(1, 1, ne * 10) else: t.Translate(p[0], p[1], ne) t.RotateX(90) # put it along Z tf = vtk.vtkTransformPolyDataFilter() tf.SetInputData(cyl.GetOutput()) tf.SetTransform(t) tf.Update() if c is None: col = i h = Mesh(tf.GetOutput(), c=col, alpha=alpha).flat() h.GetProperty().SetSpecular(0) h.GetProperty().SetDiffuse(1) h.PickableOff() hexs.append(h) if ne > binmax: binmax = ne if cmap is not None: for h in hexs: z = h.GetBounds()[5] col = colors.colorMap(z, cmap, 0, binmax) h.color(col) asse = Assembly(hexs) asse.SetScale(1.2 / n * dx, 1 / m * dy, norm / binmax * (dx + dy) / 4) asse.SetPosition(xmin, ymin, 0) return asse
def histogram( values, xtitle="", ytitle="", bins=25, vrange=None, logscale=False, yscale=None, fill=True, gap=0.02, c="olivedrab", alpha=1, outline=True, lw=2, lc="black", errors=False, ): """ Build a histogram from a list of values in n bins. The resulting object is an ``Assembly``. :param int bins: number of bins. :param list vrange: restrict the range of the histogram. :param bool logscale: use logscale on y-axis. :param bool fill: fill bars woth solid color `c`. :param float gap: leave a small space btw bars. :param bool outline: show outline of the bins. :param bool errors: show error bars. |histogram| |histogram.py|_ """ if xtitle: from vtkplotter import settings settings.xtitle = xtitle if ytitle: from vtkplotter import settings settings.ytitle = ytitle fs, edges = np.histogram(values, bins=bins, range=vrange) if logscale: fs = np.log10(fs + 1) mine, maxe = np.min(edges), np.max(edges) binsize = edges[1] - edges[0] rs = [] if fill: if outline: gap = 0 for i in range(bins): p0 = (edges[i] + gap * binsize, 0, 0) p1 = (edges[i + 1] - gap * binsize, fs[i], 0) r = shapes.Rectangle(p0, p1) r.color(c).alpha(alpha).lighting("ambient") rs.append(r) if outline: lns = [[mine, 0, 0]] for i in range(bins): lns.append([edges[i], fs[i], 0]) lns.append([edges[i + 1], fs[i], 0]) lns.append([maxe, 0, 0]) rs.append(shapes.Line(lns, c=lc, alpha=alpha, lw=lw)) if errors: errs = np.sqrt(fs) for i in range(bins): x = (edges[i] + edges[i + 1]) / 2 el = shapes.Line( [x, fs[i] - errs[i] / 2, 0.1 * binsize], [x, fs[i] + errs[i] / 2, 0.1 * binsize], c=lc, alpha=alpha, lw=lw, ) pt = shapes.Point([x, fs[i], 0.1 * binsize], r=7, c=lc, alpha=alpha) rs.append(el) rs.append(pt) asse = Assembly(rs) if yscale is None: yscale = 10 / np.sum(fs) * (maxe - mine) asse.scale([1, yscale, 1]) return asse
def plotxy( data, xerrors=None, yerrors=None, xlimits=None, ylimits=None, xscale=1, yscale=None, xlogscale=False, ylogscale=False, c="k", alpha=1, xtitle="x", ytitle="y", title="", titleSize=None, ec=None, lc="k", lw=2, line=True, dashed=False, splined=False, marker=None, ms=None, mc=None, ma=None, ): """Draw a 2D plot of variable x vs y. :param list data: input format can be [allx, ally] or [(x1,y1), (x2,y2), ...] :param list xerrors: set uncertainties for the x variable, shown as error bars. :param list yerrors: set uncertainties for the y variable, shown as error bars. :param list xlimits: set limits to the range for the x variable :param list ylimits: set limits to the range for the y variable :param float xscale: set scaling factor in x. Default is 1. :param float yscale: set scaling factor in y. Automatically calculated to get a reasonable aspect ratio. Scaling factor is saved in `info['yscale']`. :param bool xlogscale: set x logarithmic scale. :param bool ylogscale: set y logarithmic scale. :param str c: color of frame and text. :param float alpha: opacity of frame and text. :param str xtitle: title label along x-axis. :param str ytitle: title label along y-axis. :param str title: histogram title on top. :param float titleSize: size of title :param str ec: color of error bar, by default the same as marker color :param str lc: color of line :param float lw: width of line :param bool line: join points with line :param bool dashed: use a dashed line style :param bool splined: spline the line joining the point as a countinous curve :param str,int marker: use a marker shape for the data points :param float ms: marker size. :param str mc: color of marker :param float ma: opacity of marker |plotxy| |plotxy.py|_ """ if len(data) == 2 and len(data[0]) > 1 and len(data[0]) == len(data[1]): #format is [allx, ally], convert it: data = np.c_[data[0], data[1]] if xlimits is not None: cdata = [] x0lim = xlimits[0] x1lim = xlimits[1] for d in data: if d[0] > x0lim and d[0] < x1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within xlimits", c=1) return None if ylimits is not None: cdata = [] y0lim = ylimits[0] y1lim = ylimits[1] for d in data: if d[1] > y0lim and d[1] < y1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within ylimits", c=1) return None data = np.array(data)[:, [0, 1]] if xlogscale: data[:, 0] = np.log(data[:, 0]) if ylogscale: data[:, 1] = np.log(data[:, 1]) x0, y0 = np.min(data, axis=0) x1, y1 = np.max(data, axis=0) if yscale is None: yscale = (x1 - x0) / (y1 - y0) * 0.75 # default 3/4 aspect ratio yscale = float(utils.precision(yscale, 1)) if abs(yscale - 1) > 0.2: ytitle += " *" + str(yscale) y0 *= yscale y1 *= yscale else: yscale = 1 scale = np.array([[xscale, yscale]]) data = np.multiply(data, scale) acts = [] if dashed: l = shapes.DashedLine(data, lw=lw, spacing=20) acts.append(l) elif splined: l = shapes.KSpline(data).lw(lw).c(lc) acts.append(l) elif line: l = shapes.Line(data, lw=lw, c=lc) acts.append(l) if marker: if ms is None: ms = (x1 - x0) / 75.0 if mc is None: mc = lc mk = shapes.Marker(marker, s=ms, alpha=ma) pts = shapes.Points(data) marked = shapes.Glyph(pts, glyphObj=mk, c=mc) acts.append(marked) if ec is None: if mc is not None: ec = mc else: ec = lc offs = (x1 - x0) / 1000 if yerrors is not None: if len(yerrors) != len(data): colors.printc( "Error in plotxy(yerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] yerr = yerrors[i] / 2 * yscale errs.append( shapes.Line((xval, yval - yerr, offs), (xval, yval + yerr, offs))) myerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(myerrs) if xerrors is not None: if len(xerrors) != len(data): colors.printc( "Error in plotxy(xerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] xerr = xerrors[i] / 2 errs.append( shapes.Line((xval - xerr, yval, offs), (xval + xerr, yval, offs))) mxerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(mxerrs) x0lim = x0 x1lim = x1 y0lim = y0 * yscale y1lim = y1 * yscale if xlimits is not None or ylimits is not None: if xlimits is not None: x0lim = min(xlimits[0], x0) x1lim = max(xlimits[1], x1) if ylimits is not None: y0lim = min(ylimits[0] * yscale, y0) y1lim = max(ylimits[1] * yscale, y1) rec = shapes.Rectangle([x0lim, y0lim, 0], [x1lim, y1lim, 0]) rec.alpha(0).wireframe() acts.append(rec) if title: if titleSize is None: titleSize = (x1lim - x0lim) / 40.0 tit = shapes.Text( title, s=titleSize, c=c, depth=0, alpha=alpha, pos=((x1lim + x0lim) / 2.0, y1lim, 0), justify="bottom-center", ) tit.pickable(False) acts.append(tit) settings.xtitle = xtitle settings.ytitle = ytitle asse = Assembly(acts) asse.info["yscale"] = yscale return asse