def polarPlot( rphi, title="", r1=0, r2=1, lpos=1, lsize=0.03, c="blue", bc="k", alpha=1, lw=3, deg=False, vmax=None, fill=True, spline=True, smooth=0, showPoints=True, showDisc=True, showLines=True, showAngles=True, ): """ Polar/radar plot by splining a set of points in polar coordinates. Input is a list of polar angles and radii. :param str title: histogram title :param int bins: number of bins in phi :param float r1: inner radius :param float r2: outer radius :param float lsize: label size :param c: color of the line :param bc: color of the frame and labels :param alpha: alpha of the frame :param int lw: line width in pixels :param bool deg: input array is in degrees :param bool fill: fill convex area with solid color :param bool spline: interpolate the set of input points :param bool showPoints: show data points :param bool showDisc: show the outer ring axis :param bool showLines: show lines to the origin :param bool showAngles: show angular values |polarPlot| |polarPlot.py|_ """ if len(rphi) == 2: #rphi = list(zip(rphi[0], rphi[1])) rphi = np.stack((rphi[0], rphi[1]), axis=1) rphi = np.array(rphi) thetas = rphi[:, 0] radii = rphi[:, 1] k = 180 / np.pi if deg: thetas = np.array(thetas) / k vals = [] for v in thetas: # normalize range t = np.arctan2(np.sin(v), np.cos(v)) if t < 0: t += 2 * np.pi vals.append(t) thetas = np.array(vals) if vmax is None: vmax = np.max(radii) angles = [] labs = [] points = [] for i in range(len(thetas)): t = thetas[i] r = (radii[i]) / vmax * r2 + r1 ct, st = np.cos(t), np.sin(t) points.append([r * ct, r * st, 0]) p0 = points[0] points.append(p0) r2e = r1 + r2 if spline: lines = shapes.KSpline(points, closed=True) else: lines = shapes.Line(points) lines.c(c).lw(lw).alpha(alpha) points.pop() ptsact = None if showPoints: ptsact = shapes.Points(points).c(c).alpha(alpha) filling = None if fill: faces = [] coords = [[0, 0, 0]] + lines.coordinates().tolist() for i in range(1, lines.N()): faces.append([0, i, i + 1]) filling = Actor([coords, faces]).c(c).alpha(alpha) back = None if showDisc: back = shapes.Disc(r1=r2e, r2=r2e * 1.01, c=bc, res=1, resphi=360) back.z(-0.01).lighting(diffuse=0, ambient=1).alpha(alpha) ti = None if title: ti = shapes.Text(title, (0, 0, 0), s=lsize * 2, depth=0, justify="top-center") ti.pos(0, -r2e * 1.15, 0.01) rays = [] if showDisc: rgap = 0.05 for t in np.linspace(0, 2 * np.pi, num=8, endpoint=False): ct, st = np.cos(t), np.sin(t) if showLines: l = shapes.Line((0, 0, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01)) rays.append(l) elif showAngles: # just the ticks l = shapes.Line( (r2e * ct * 0.98, r2e * st * 0.98, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01), ) if showAngles: if 0 <= t < np.pi / 2: ju = "bottom-left" elif t == np.pi / 2: ju = "bottom-center" elif np.pi / 2 < t <= np.pi: ju = "bottom-right" elif np.pi < t < np.pi * 3 / 2: ju = "top-right" elif t == np.pi * 3 / 2: ju = "top-center" else: ju = "top-left" a = shapes.Text(int(t * k), pos=(0, 0, 0), s=lsize, depth=0, justify=ju) a.pos(r2e * ct * (1 + rgap), r2e * st * (1 + rgap), -0.01) angles.append(a) mrg = merge(back, angles, rays, labs, ti) if mrg: mrg.color(bc).alpha(alpha).lighting(diffuse=0, ambient=1) rh = Assembly([lines, ptsact, filling] + [mrg]) rh.base = np.array([0, 0, 0]) rh.top = np.array([0, 0, 1]) return rh
def polarHistogram( values, title="", bins=10, r1=0.25, r2=1, phigap=3, rgap=0.05, lpos=1, lsize=0.05, c=None, bc="k", alpha=1, cmap=None, deg=False, vmin=None, vmax=None, labels=(), showDisc=True, showLines=True, showAngles=True, showErrors=False, ): """ Polar histogram with errorbars. :param str title: histogram title :param int bins: number of bins in phi :param float r1: inner radius :param float r2: outer radius :param float phigap: gap angle btw 2 radial bars, in degrees :param float rgap: gap factor along radius of numeric angle labels :param float lpos: label gap factor along radius :param float lsize: label size :param c: color of the histogram bars, can be a list of length `bins`. :param bc: color of the frame and labels :param alpha: alpha of the frame :param str cmap: color map name :param bool deg: input array is in degrees :param float vmin: minimum value of the radial axis :param float vmax: maximum value of the radial axis :param list labels: list of labels, must be of length `bins` :param bool showDisc: show the outer ring axis :param bool showLines: show lines to the origin :param bool showAngles: show angular values :param bool showErrors: show error bars |polarHisto| |polarHisto.py|_ """ k = 180 / np.pi if deg: values = np.array(values) / k dp = np.pi / bins vals = [] for v in values: # normalize range t = np.arctan2(np.sin(v), np.cos(v)) if t < 0: t += 2 * np.pi vals.append(t - dp) histodata, edges = np.histogram(vals, bins=bins, range=(-dp, 2 * np.pi - dp)) thetas = [] for i in range(bins): thetas.append((edges[i] + edges[i + 1]) / 2) if vmin is None: vmin = np.min(histodata) if vmax is None: vmax = np.max(histodata) errors = np.sqrt(histodata) r2e = r1 + r2 if showErrors: r2e += np.max(errors) / vmax * 1.5 back = None if showDisc: back = shapes.Disc(r1=r2e, r2=r2e * 1.01, c=bc, res=1, resphi=360) back.z(-0.01).lighting(diffuse=0, ambient=1).alpha(alpha) slices = [] lines = [] angles = [] labs = [] errbars = [] for i, t in enumerate(thetas): r = histodata[i] / vmax * r2 d = shapes.Disc((0, 0, 0), r1, r1 + r, res=1, resphi=360) delta = dp - np.pi / 2 - phigap / k d.cutWithPlane(normal=(np.cos(t + delta), np.sin(t + delta), 0)) d.cutWithPlane(normal=(np.cos(t - delta), np.sin(t - delta), 0)) if cmap is not None: cslice = colors.colorMap(histodata[i], cmap, vmin, vmax) d.color(cslice) else: if c is None: d.color(i) elif utils.isSequence(c) and len(c) == bins: d.color(c[i]) else: d.color(c) slices.append(d) ct, st = np.cos(t), np.sin(t) if showErrors: showLines = False err = np.sqrt(histodata[i]) / vmax * r2 errl = shapes.Line( ((r1 + r - err) * ct, (r1 + r - err) * st, 0.01), ((r1 + r + err) * ct, (r1 + r + err) * st, 0.01), ) errl.alpha(alpha).lw(3).color(bc) errbars.append(errl) if showDisc: if showLines: l = shapes.Line((0, 0, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01)) lines.append(l) elif showAngles: # just the ticks l = shapes.Line( (r2e * ct * 0.98, r2e * st * 0.98, -0.01), (r2e * ct * 1.03, r2e * st * 1.03, -0.01), ) lines.append(l) if showAngles: if 0 <= t < np.pi / 2: ju = "bottom-left" elif t == np.pi / 2: ju = "bottom-center" elif np.pi / 2 < t <= np.pi: ju = "bottom-right" elif np.pi < t < np.pi * 3 / 2: ju = "top-right" elif t == np.pi * 3 / 2: ju = "top-center" else: ju = "top-left" a = shapes.Text(int(t * k), pos=(0, 0, 0), s=lsize, depth=0, justify=ju) a.pos(r2e * ct * (1 + rgap), r2e * st * (1 + rgap), -0.01) angles.append(a) if len(labels) == bins: lab = shapes.Text(labels[i], (0, 0, 0), s=lsize, depth=0, justify="center") lab.pos(r2e * ct * (1 + rgap) * lpos / 2, r2e * st * (1 + rgap) * lpos / 2, 0.01) labs.append(lab) ti = None if title: ti = shapes.Text(title, (0, 0, 0), s=lsize * 2, depth=0, justify="top-center") ti.pos(0, -r2e * 1.15, 0.01) mrg = merge(back, lines, angles, labs, ti) if mrg: mrg.color(bc).alpha(alpha).lighting(diffuse=0, ambient=1) rh = Assembly(slices + errbars + [mrg]) rh.base = np.array([0, 0, 0]) rh.top = np.array([0, 0, 1]) return rh
def plotxy( data, xerrors=None, yerrors=None, xlimits=None, ylimits=None, xscale=1, yscale=None, xlogscale=False, ylogscale=False, c="k", alpha=1, xtitle="x", ytitle="y", title="", titleSize=None, ec=None, lc="k", lw=2, line=True, dashed=False, splined=False, marker=None, ms=None, mc=None, ma=None, ): """Draw a 2D plot of variable x vs y. :param list data: input format can be [allx, ally] or [(x1,y1), (x2,y2), ...] :param list xerrors: set uncertainties for the x variable, shown as error bars. :param list yerrors: set uncertainties for the y variable, shown as error bars. :param list xlimits: set limits to the range for the x variable :param list ylimits: set limits to the range for the y variable :param float xscale: set scaling factor in x. Default is 1. :param float yscale: set scaling factor in y. Automatically calculated to get a reasonable aspect ratio. Scaling factor is saved in `info['yscale']`. :param bool xlogscale: set x logarithmic scale. :param bool ylogscale: set y logarithmic scale. :param str c: color of frame and text. :param float alpha: opacity of frame and text. :param str xtitle: title label along x-axis. :param str ytitle: title label along y-axis. :param str title: histogram title on top. :param float titleSize: size of title :param str ec: color of error bar, by default the same as marker color :param str lc: color of line :param float lw: width of line :param bool line: join points with line :param bool dashed: use a dashed line style :param bool splined: spline the line joining the point as a countinous curve :param str,int marker: use a marker shape for the data points :param float ms: marker size. :param str mc: color of marker :param float ma: opacity of marker |plotxy| |plotxy.py|_ """ if len(data) == 2 and len(data[0]) > 1 and len(data[0]) == len(data[1]): #format is [allx, ally], convert it: data = np.c_[data[0], data[1]] if xlimits is not None: cdata = [] x0lim = xlimits[0] x1lim = xlimits[1] for d in data: if d[0] > x0lim and d[0] < x1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within xlimits", c=1) return None if ylimits is not None: cdata = [] y0lim = ylimits[0] y1lim = ylimits[1] for d in data: if d[1] > y0lim and d[1] < y1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within ylimits", c=1) return None data = np.array(data)[:, [0, 1]] if xlogscale: data[:, 0] = np.log(data[:, 0]) if ylogscale: data[:, 1] = np.log(data[:, 1]) x0, y0 = np.min(data, axis=0) x1, y1 = np.max(data, axis=0) if yscale is None: yscale = (x1 - x0) / (y1 - y0) * 0.75 # default 3/4 aspect ratio yscale = float(utils.precision(yscale, 1)) if abs(yscale - 1) > 0.2: ytitle += " *" + str(yscale) y0 *= yscale y1 *= yscale else: yscale = 1 scale = np.array([[xscale, yscale]]) data = np.multiply(data, scale) acts = [] if dashed: l = shapes.DashedLine(data, lw=lw, spacing=20) acts.append(l) elif splined: l = shapes.KSpline(data).lw(lw).c(lc) acts.append(l) elif line: l = shapes.Line(data, lw=lw, c=lc) acts.append(l) if marker: if ms is None: ms = (x1 - x0) / 75.0 if mc is None: mc = lc mk = shapes.Marker(marker, s=ms, alpha=ma) pts = shapes.Points(data) marked = shapes.Glyph(pts, glyphObj=mk, c=mc) acts.append(marked) if ec is None: if mc is not None: ec = mc else: ec = lc offs = (x1 - x0) / 1000 if yerrors is not None: if len(yerrors) != len(data): colors.printc( "Error in plotxy(yerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] yerr = yerrors[i] / 2 * yscale errs.append( shapes.Line((xval, yval - yerr, offs), (xval, yval + yerr, offs))) myerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(myerrs) if xerrors is not None: if len(xerrors) != len(data): colors.printc( "Error in plotxy(xerrors=...): mismatched array length.", c=1) return None errs = [] for i in range(len(data)): xval, yval = data[i] xerr = xerrors[i] / 2 errs.append( shapes.Line((xval - xerr, yval, offs), (xval + xerr, yval, offs))) mxerrs = merge(errs).c(ec).lw(lw).alpha(alpha) acts.append(mxerrs) x0lim = x0 x1lim = x1 y0lim = y0 * yscale y1lim = y1 * yscale if xlimits is not None or ylimits is not None: if xlimits is not None: x0lim = min(xlimits[0], x0) x1lim = max(xlimits[1], x1) if ylimits is not None: y0lim = min(ylimits[0] * yscale, y0) y1lim = max(ylimits[1] * yscale, y1) rec = shapes.Rectangle([x0lim, y0lim, 0], [x1lim, y1lim, 0]) rec.alpha(0).wireframe() acts.append(rec) if title: if titleSize is None: titleSize = (x1lim - x0lim) / 40.0 tit = shapes.Text( title, s=titleSize, c=c, depth=0, alpha=alpha, pos=((x1lim + x0lim) / 2.0, y1lim, 0), justify="bottom-center", ) tit.pickable(False) acts.append(tit) settings.xtitle = xtitle settings.ytitle = ytitle asse = Assembly(acts) asse.info["yscale"] = yscale return asse
def addAxes(axtype=None, c=None): """Draw axes on scene. Available axes types: :param int axtype: - 0, no axes, - 1, draw three gray grid walls - 2, show cartesian axes from (0,0,0) - 3, show positive range of cartesian axes from (0,0,0) - 4, show a triad at bottom left - 5, show a cube at bottom left - 6, mark the corners of the bounding box - 7, draw a simple ruler at the bottom of the window - 8, show the ``vtkCubeAxesActor`` object - 9, show the bounding box outLine - 10, show three circles representing the maximum bounding box """ vp = settings.plotter_instance if axtype is not None: vp.axes = axtype # overrride r = vp.renderers.index(vp.renderer) if not vp.axes: return if c is None: # automatic black or white c = (0.9, 0.9, 0.9) if numpy.sum(vp.renderer.GetBackground()) > 1.5: c = (0.1, 0.1, 0.1) if not vp.renderer: return if vp.axes_exist[r]: return # calculate max actors bounds bns = [] for a in vp.actors: if a and a.GetPickable(): b = a.GetBounds() if b: bns.append(b) if len(bns): max_bns = numpy.max(bns, axis=0) min_bns = numpy.min(bns, axis=0) vbb = (min_bns[0], max_bns[1], min_bns[2], max_bns[3], min_bns[4], max_bns[5]) else: vbb = vp.renderer.ComputeVisiblePropBounds() max_bns = vbb min_bns = vbb sizes = (max_bns[1] - min_bns[0], max_bns[3] - min_bns[2], max_bns[5] - min_bns[4]) ############################################################ if vp.axes == 1 or vp.axes == True: # gray grid walls nd = 4 # number of divisions in the smallest axis off = -0.04 # label offset step = numpy.min(sizes) / nd if not step: # bad proportions, use vtkCubeAxesActor vp.addAxes(axtype=8, c=c) vp.axes = 1 return rx, ry, rz = numpy.rint(sizes / step).astype(int) if max([rx / ry, ry / rx, rx / rz, rz / rx, ry / rz, rz / ry]) > 15: # bad proportions, use vtkCubeAxesActor vp.addAxes(axtype=8, c=c) vp.axes = 1 return gxy = shapes.Grid(pos=(0.5, 0.5, 0), normal=[0, 0, 1], bc=None, resx=rx, resy=ry) gxz = shapes.Grid(pos=(0.5, 0, 0.5), normal=[0, 1, 0], bc=None, resx=rz, resy=rx) gyz = shapes.Grid(pos=(0, 0.5, 0.5), normal=[1, 0, 0], bc=None, resx=rz, resy=ry) gxy.alpha(0.06).wire(False).color(c).lineWidth(1) gxz.alpha(0.04).wire(False).color(c).lineWidth(1) gyz.alpha(0.04).wire(False).color(c).lineWidth(1) xa = shapes.Line([0, 0, 0], [1, 0, 0], c=c, lw=1) ya = shapes.Line([0, 0, 0], [0, 1, 0], c=c, lw=1) za = shapes.Line([0, 0, 0], [0, 0, 1], c=c, lw=1) xt, yt, zt, ox, oy, oz = [None] * 6 if vp.xtitle: xtitle = vp.xtitle if min_bns[0] <= 0 and max_bns[1] > 0: # mark x origin ox = shapes.Cube([-min_bns[0] / sizes[0], 0, 0], side=0.008, c=c) if len(vp.xtitle) == 1: # add axis length info xtitle = vp.xtitle + " /" + utils.precision(sizes[0], 4) wpos = [1 - (len(vp.xtitle) + 1) / 40, off, 0] xt = shapes.Text(xtitle, pos=wpos, normal=(0, 0, 1), s=0.025, c=c, justify="bottom-right") if vp.ytitle: if min_bns[2] <= 0 and max_bns[3] > 0: # mark y origin oy = shapes.Cube([0, -min_bns[2] / sizes[1], 0], side=0.008, c=c) yt = shapes.Text(vp.ytitle, pos=(0, 0, 0), normal=(0, 0, 1), s=0.025, c=c, justify="bottom-right") if len(vp.ytitle) == 1: wpos = [off, 1 - (len(vp.ytitle) + 1) / 40, 0] yt.pos(wpos) else: wpos = [off * 0.7, 1 - (len(vp.ytitle) + 1) / 40, 0] yt.rotateZ(90).pos(wpos) if vp.ztitle: if min_bns[4] <= 0 and max_bns[5] > 0: # mark z origin oz = shapes.Cube([0, 0, -min_bns[4] / sizes[2]], side=0.008, c=c) zt = shapes.Text(vp.ztitle, pos=(0, 0, 0), normal=(1, -1, 0), s=0.025, c=c, justify="bottom-right") if len(vp.ztitle) == 1: wpos = [off * 0.6, off * 0.6, 1 - (len(vp.ztitle) + 1) / 40] zt.rotate(90, (1, -1, 0)).pos(wpos) else: wpos = [off * 0.3, off * 0.3, 1 - (len(vp.ztitle) + 1) / 40] zt.rotate(180, (1, -1, 0)).pos(wpos) acts = [gxy, gxz, gyz, xa, ya, za, xt, yt, zt, ox, oy, oz] for a in acts: if a: a.PickableOff() aa = Assembly(acts) aa.pos(min_bns[0], min_bns[2], min_bns[4]) aa.SetScale(sizes) aa.PickableOff() vp.renderer.AddActor(aa) vp.axes_exist[r] = aa elif vp.axes == 2 or vp.axes == 3: vbb = vp.renderer.ComputeVisiblePropBounds() # to be double checked xcol, ycol, zcol = "db", "dg", "dr" s = 1 alpha = 1 centered = False x0, x1, y0, y1, z0, z1 = vbb dx, dy, dz = x1 - x0, y1 - y0, z1 - z0 aves = numpy.sqrt(dx * dx + dy * dy + dz * dz) / 2 x0, x1 = min(x0, 0), max(x1, 0) y0, y1 = min(y0, 0), max(y1, 0) z0, z1 = min(z0, 0), max(z1, 0) if vp.axes == 3: if x1 > 0: x0 = 0 if y1 > 0: y0 = 0 if z1 > 0: z0 = 0 dx, dy, dz = x1 - x0, y1 - y0, z1 - z0 acts = [] if x0 * x1 <= 0 or y0 * z1 <= 0 or z0 * z1 <= 0: # some ranges contain origin zero = shapes.Sphere(r=aves / 120 * s, c="k", alpha=alpha, res=10) acts += [zero] if len(vp.xtitle) and dx > aves / 100: xl = shapes.Cylinder([[x0, 0, 0], [x1, 0, 0]], r=aves / 250 * s, c=xcol, alpha=alpha) xc = shapes.Cone(pos=[x1, 0, 0], c=xcol, alpha=alpha, r=aves / 100 * s, height=aves / 25 * s, axis=[1, 0, 0], res=10) wpos = [ x1 - (len(vp.xtitle) + 1) * aves / 40 * s, -aves / 25 * s, 0 ] # aligned to arrow tip if centered: wpos = [(x0 + x1) / 2 - len(vp.xtitle) / 2 * aves / 40 * s, -aves / 25 * s, 0] xt = shapes.Text(vp.xtitle, pos=wpos, normal=(0, 0, 1), s=aves / 40 * s, c=xcol) acts += [xl, xc, xt] if len(vp.ytitle) and dy > aves / 100: yl = shapes.Cylinder([[0, y0, 0], [0, y1, 0]], r=aves / 250 * s, c=ycol, alpha=alpha) yc = shapes.Cone(pos=[0, y1, 0], c=ycol, alpha=alpha, r=aves / 100 * s, height=aves / 25 * s, axis=[0, 1, 0], res=10) wpos = [ -aves / 40 * s, y1 - (len(vp.ytitle) + 1) * aves / 40 * s, 0 ] if centered: wpos = [ -aves / 40 * s, (y0 + y1) / 2 - len(vp.ytitle) / 2 * aves / 40 * s, 0 ] yt = shapes.Text(vp.ytitle, pos=(0, 0, 0), normal=(0, 0, 1), s=aves / 40 * s, c=ycol) yt.rotate(90, [0, 0, 1]).pos(wpos) acts += [yl, yc, yt] if len(vp.ztitle) and dz > aves / 100: zl = shapes.Cylinder([[0, 0, z0], [0, 0, z1]], r=aves / 250 * s, c=zcol, alpha=alpha) zc = shapes.Cone(pos=[0, 0, z1], c=zcol, alpha=alpha, r=aves / 100 * s, height=aves / 25 * s, axis=[0, 0, 1], res=10) wpos = [ -aves / 50 * s, -aves / 50 * s, z1 - (len(vp.ztitle) + 1) * aves / 40 * s ] if centered: wpos = [ -aves / 50 * s, -aves / 50 * s, (z0 + z1) / 2 - len(vp.ztitle) / 2 * aves / 40 * s ] zt = shapes.Text(vp.ztitle, pos=(0, 0, 0), normal=(1, -1, 0), s=aves / 40 * s, c=zcol) zt.rotate(180, (1, -1, 0)).pos(wpos) acts += [zl, zc, zt] for a in acts: a.PickableOff() ass = Assembly(acts) ass.PickableOff() vp.renderer.AddActor(ass) vp.axes_exist[r] = ass elif vp.axes == 4: axact = vtk.vtkAxesActor() axact.SetShaftTypeToCylinder() axact.SetCylinderRadius(0.03) axact.SetXAxisLabelText(vp.xtitle) axact.SetYAxisLabelText(vp.ytitle) axact.SetZAxisLabelText(vp.ztitle) axact.GetXAxisShaftProperty().SetColor(0, 0, 1) axact.GetZAxisShaftProperty().SetColor(1, 0, 0) axact.GetXAxisTipProperty().SetColor(0, 0, 1) axact.GetZAxisTipProperty().SetColor(1, 0, 0) bc = numpy.array(vp.renderer.GetBackground()) if numpy.sum(bc) < 1.5: lc = (1, 1, 1) else: lc = (0, 0, 0) axact.GetXAxisCaptionActor2D().GetCaptionTextProperty().BoldOff() axact.GetYAxisCaptionActor2D().GetCaptionTextProperty().BoldOff() axact.GetZAxisCaptionActor2D().GetCaptionTextProperty().BoldOff() axact.GetXAxisCaptionActor2D().GetCaptionTextProperty().ItalicOff() axact.GetYAxisCaptionActor2D().GetCaptionTextProperty().ItalicOff() axact.GetZAxisCaptionActor2D().GetCaptionTextProperty().ItalicOff() axact.GetXAxisCaptionActor2D().GetCaptionTextProperty().ShadowOff() axact.GetYAxisCaptionActor2D().GetCaptionTextProperty().ShadowOff() axact.GetZAxisCaptionActor2D().GetCaptionTextProperty().ShadowOff() axact.GetXAxisCaptionActor2D().GetCaptionTextProperty().SetColor(lc) axact.GetYAxisCaptionActor2D().GetCaptionTextProperty().SetColor(lc) axact.GetZAxisCaptionActor2D().GetCaptionTextProperty().SetColor(lc) axact.PickableOff() icn = addIcon(axact, size=0.1) vp.axes_exist[r] = icn elif vp.axes == 5: axact = vtk.vtkAnnotatedCubeActor() axact.GetCubeProperty().SetColor(0.75, 0.75, 0.75) axact.SetTextEdgesVisibility(0) axact.SetFaceTextScale(0.4) axact.GetXPlusFaceProperty().SetColor(colors.getColor("b")) axact.GetXMinusFaceProperty().SetColor(colors.getColor("db")) axact.GetYPlusFaceProperty().SetColor(colors.getColor("g")) axact.GetYMinusFaceProperty().SetColor(colors.getColor("dg")) axact.GetZPlusFaceProperty().SetColor(colors.getColor("r")) axact.GetZMinusFaceProperty().SetColor(colors.getColor("dr")) axact.PickableOff() icn = addIcon(axact, size=0.06) vp.axes_exist[r] = icn elif vp.axes == 6: ocf = vtk.vtkOutlineCornerFilter() ocf.SetCornerFactor(0.1) largestact, sz = None, -1 for a in vp.actors: if a.GetPickable(): b = a.GetBounds() d = max(b[1] - b[0], b[3] - b[2], b[5] - b[4]) if sz < d: largestact = a sz = d if isinstance(largestact, Assembly): ocf.SetInputData(largestact.getActor(0).GetMapper().GetInput()) else: ocf.SetInputData(largestact.polydata()) ocf.Update() ocMapper = vtk.vtkHierarchicalPolyDataMapper() ocMapper.SetInputConnection(0, ocf.GetOutputPort(0)) ocActor = vtk.vtkActor() ocActor.SetMapper(ocMapper) bc = numpy.array(vp.renderer.GetBackground()) if numpy.sum(bc) < 1.5: lc = (1, 1, 1) else: lc = (0, 0, 0) ocActor.GetProperty().SetColor(lc) ocActor.PickableOff() vp.renderer.AddActor(ocActor) vp.axes_exist[r] = ocActor elif vp.axes == 7: # draws a simple ruler at the bottom of the window ls = vtk.vtkLegendScaleActor() ls.RightAxisVisibilityOff() ls.TopAxisVisibilityOff() ls.LegendVisibilityOff() ls.LeftAxisVisibilityOff() ls.GetBottomAxis().SetNumberOfMinorTicks(1) ls.GetBottomAxis().GetProperty().SetColor(c) ls.GetBottomAxis().GetLabelTextProperty().SetColor(c) ls.GetBottomAxis().GetLabelTextProperty().BoldOff() ls.GetBottomAxis().GetLabelTextProperty().ItalicOff() ls.GetBottomAxis().GetLabelTextProperty().ShadowOff() ls.PickableOff() vp.renderer.AddActor(ls) vp.axes_exist[r] = ls elif vp.axes == 8: ca = vtk.vtkCubeAxesActor() ca.SetBounds(vbb) if vp.camera: ca.SetCamera(vp.camera) else: ca.SetCamera(vp.renderer.GetActiveCamera()) ca.GetXAxesLinesProperty().SetColor(c) ca.GetYAxesLinesProperty().SetColor(c) ca.GetZAxesLinesProperty().SetColor(c) for i in range(3): ca.GetLabelTextProperty(i).SetColor(c) ca.GetTitleTextProperty(i).SetColor(c) ca.SetTitleOffset(5) ca.SetFlyMode(3) ca.SetXTitle(vp.xtitle) ca.SetYTitle(vp.ytitle) ca.SetZTitle(vp.ztitle) if vp.xtitle == "": ca.SetXAxisVisibility(0) ca.XAxisLabelVisibilityOff() if vp.ytitle == "": ca.SetYAxisVisibility(0) ca.YAxisLabelVisibilityOff() if vp.ztitle == "": ca.SetZAxisVisibility(0) ca.ZAxisLabelVisibilityOff() ca.PickableOff() vp.renderer.AddActor(ca) vp.axes_exist[r] = ca return elif vp.axes == 9: src = vtk.vtkCubeSource() src.SetXLength(vbb[1] - vbb[0]) src.SetYLength(vbb[3] - vbb[2]) src.SetZLength(vbb[5] - vbb[4]) src.Update() ca = Actor(src.GetOutput(), c=c, alpha=0.5, wire=1) ca.pos((vbb[0] + vbb[1]) / 2, (vbb[3] + vbb[2]) / 2, (vbb[5] + vbb[4]) / 2) ca.PickableOff() vp.renderer.AddActor(ca) vp.axes_exist[r] = ca elif vp.axes == 10: x0 = (vbb[0] + vbb[1]) / 2, (vbb[3] + vbb[2]) / 2, (vbb[5] + vbb[4]) / 2 rx, ry, rz = (vbb[1] - vbb[0]) / 2, (vbb[3] - vbb[2]) / 2, (vbb[5] - vbb[4]) / 2 rm = max(rx, ry, rz) xc = shapes.Disc(x0, (0, 0, 1), r1=rm, r2=rm, c='lr', bc=None, res=1, resphi=72) yc = shapes.Disc(x0, (0, 1, 0), r1=rm, r2=rm, c='lg', bc=None, res=1, resphi=72) zc = shapes.Disc(x0, (1, 0, 0), r1=rm, r2=rm, c='lb', bc=None, res=1, resphi=72) xc.clean().alpha(0.2).wire().lineWidth(2.5).PickableOff() yc.clean().alpha(0.2).wire().lineWidth(2.5).PickableOff() zc.clean().alpha(0.2).wire().lineWidth(2.5).PickableOff() ca = xc + yc + zc ca.PickableOff() vp.renderer.AddActor(ca) vp.axes_exist[r] = ca else: colors.printc('~bomb Keyword axes must be in range [0-10].', c=1) colors.printc(''' ~target Available axes types: 0 = no axes, 1 = draw three gray grid walls 2 = show cartesian axes from (0,0,0) 3 = show positive range of cartesian axes from (0,0,0) 4 = show a triad at bottom left 5 = show a cube at bottom left 6 = mark the corners of the bounding box 7 = draw a simple ruler at the bottom of the window 8 = show the vtkCubeAxesActor object 9 = show the bounding box outline 10 = show three circles representing the maximum bounding box ''', c=1, bold=0) if not vp.axes_exist[r]: vp.axes_exist[r] = True return
def addScalarBar3D( obj=None, at=0, pos=(0, 0, 0), normal=(0, 0, 1), sx=0.1, sy=2, nlabels=9, ncols=256, cmap=None, c=None, alpha=1, ): """Draw a 3D scalar bar. ``obj`` input can be: - a list of numbers, - a list of two numbers in the form `(min, max)`, - a ``vtkActor`` already containing a set of scalars associated to vertices or cells, - if ``None`` the last actor in the list of actors will be used. .. hint:: |scalbar| |mesh_coloring.py|_ """ from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk vp = settings.plotter_instance if c is None: # automatic black or white c = (0.8, 0.8, 0.8) if numpy.sum(colors.getColor(vp.backgrcol)) > 1.5: c = (0.2, 0.2, 0.2) c = colors.getColor(c) gap = 0.4 # space btw nrs and scale vtkscalars_name = "" if obj is None: obj = vp.lastActor() if isinstance(obj, vtk.vtkActor): poly = obj.GetMapper().GetInput() vtkscalars = poly.GetPointData().GetScalars() if vtkscalars is None: vtkscalars = poly.GetCellData().GetScalars() if vtkscalars is None: print("Error in addScalarBar3D: actor has no scalar array.", [obj]) exit() npscalars = vtk_to_numpy(vtkscalars) vmin, vmax = numpy.min(npscalars), numpy.max(npscalars) vtkscalars_name = vtkscalars.GetName().split("_")[-1] elif utils.isSequence(obj): vmin, vmax = numpy.min(obj), numpy.max(obj) vtkscalars_name = "jet" else: print("Error in addScalarBar3D(): input must be vtkActor or list.", type(obj)) exit() if cmap is None: cmap = vtkscalars_name # build the color scale part scale = shapes.Grid([-sx * gap, 0, 0], c=c, alpha=alpha, sx=sx, sy=sy, resx=1, resy=ncols) scale.GetProperty().SetRepresentationToSurface() cscals = scale.cellCenters()[:, 1] def _cellColors(scale, scalars, cmap, alpha): mapper = scale.GetMapper() cpoly = mapper.GetInput() n = len(scalars) lut = vtk.vtkLookupTable() lut.SetNumberOfTableValues(n) lut.Build() for i in range(n): r, g, b = colors.colorMap(i, cmap, 0, n) lut.SetTableValue(i, r, g, b, alpha) arr = numpy_to_vtk(numpy.ascontiguousarray(scalars), deep=True) vmin, vmax = numpy.min(scalars), numpy.max(scalars) mapper.SetScalarRange(vmin, vmax) mapper.SetLookupTable(lut) mapper.ScalarVisibilityOn() cpoly.GetCellData().SetScalars(arr) _cellColors(scale, cscals, cmap, alpha) # build text nlabels = numpy.min([nlabels, ncols]) tlabs = numpy.linspace(vmin, vmax, num=nlabels, endpoint=True) tacts = [] prec = (vmax - vmin) / abs(vmax + vmin) * 2 prec = int(3 + abs(numpy.log10(prec + 1))) for i, t in enumerate(tlabs): tx = utils.precision(t, prec) y = -sy / 1.98 + sy * i / (nlabels - 1) a = shapes.Text(tx, pos=[sx * gap, y, 0], s=sy / 50, c=c, alpha=alpha, depth=0) a.PickableOff() tacts.append(a) sact = Assembly([scale] + tacts) nax = numpy.linalg.norm(normal) if nax: normal = numpy.array(normal) / nax theta = numpy.arccos(normal[2]) phi = numpy.arctan2(normal[1], normal[0]) sact.RotateZ(numpy.rad2deg(phi)) sact.RotateY(numpy.rad2deg(theta)) sact.SetPosition(pos) if not vp.renderers[at]: save_int = vp.interactive vp.show(interactive=0) vp.interactive = save_int vp.renderers[at].AddActor(sact) vp.renderers[at].Render() sact.PickableOff() vp.scalarbars.append(sact) if isinstance(obj, Actor): obj.scalarbar_actor = sact return sact
def plotxy( data, xlimits=None, ylimits=None, xscale=1, yscale=None, xlogscale=False, ylogscale=False, c="k", alpha=1, xtitle="x", ytitle="y", title="", titleSize=None, lc="k", lw=2, dashed=False, splined=False, marker=None, ms=None, mc=None, ma=None, ): """Draw a 2D plot of variable x vs y. """ if len(data) == 2 and len(data[0]) > 1 and len(data[0]) == len(data[1]): data = np.c_[data[0], data[1]] if xlimits is not None: cdata = [] x0lim = xlimits[0] x1lim = xlimits[1] for d in data: if d[0] > x0lim and d[0] < x1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within xlimits", c=1) return None if ylimits is not None: cdata = [] y0lim = ylimits[0] y1lim = ylimits[1] for d in data: if d[1] > y0lim and d[1] < y1lim: cdata.append(d) data = cdata if not len(data): colors.printc("Error in plotxy(): no points within ylimits", c=1) return None data = np.array(data)[:, [0, 1]] if xlogscale: data[:, 0] = np.log(data[:, 0]) if ylogscale: data[:, 1] = np.log(data[:, 1]) x0, y0 = np.min(data, axis=0) x1, y1 = np.max(data, axis=0) if yscale is None: yscale = (x1 - x0) / (y1 - y0) * 0.75 # default 3/4 aspect ratio yscale = float(utils.precision(yscale, 1)) if abs(yscale - 1) > 0.2: ytitle += " *" + str(yscale) y0 *= yscale y1 *= yscale else: yscale = 1 scale = np.array([[xscale, yscale]]) data = np.multiply(data, scale) acts = [] if dashed: l = shapes.DashedLine(data, lw=lw, spacing=20) elif splined: l = shapes.KSpline(data).lw(lw).c(lc) else: l = shapes.Line(data, lw=lw, c=lc) acts.append(l) if marker: if ms is None: ms = (x1 - x0) / 75.0 if mc is None: mc = lc mk = shapes.Marker(marker, s=ms, alpha=ma) pts = shapes.Points(data) marked = shapes.Glyph(pts, glyphObj=mk, c=mc) acts.append(marked) x0lim = x0 x1lim = x1 y0lim = y0 * yscale y1lim = y1 * yscale if xlimits is not None or ylimits is not None: if xlimits is not None: x0lim = min(xlimits[0], x0) x1lim = max(xlimits[1], x1) if ylimits is not None: y0lim = min(ylimits[0] * yscale, y0) y1lim = max(ylimits[1] * yscale, y1) rec = shapes.Rectangle([x0lim, y0lim, 0], [x1lim, y1lim, 0]) rec.alpha(0).wireframe() acts.append(rec) if title: if titleSize is None: titleSize = (x1lim - x0lim) / 40.0 tit = shapes.Text( title, s=titleSize, c=c, depth=0, alpha=alpha, pos=((x1lim + x0lim) / 2.0, y1lim, 0), justify="bottom-center", ) tit.pickable(False) acts.append(tit) settings.xtitle = xtitle settings.ytitle = ytitle asse = Assembly(acts) asse.info["yscale"] = yscale return asse