Exemple #1
0
def make_test_pairwise_fetaures(case1, case2, label, rng):
    import vtool as vt

    mu_fm = 50 if label == 1 else 10
    sigma_fm = 10 if label == 1 else 20
    mu_fs = 0.2 if label == 1 else 0.4
    sigma_fs = 0.1 if label == 1 else 0.1
    num_top = 4
    max_feats = min(case1['nfeats'], case2['nfeats'])
    num_matches = (
        np.clip(rng.normal(mu_fm, sigma_fm, size=1)[0], num_top + 1, max_feats).astype(
            np.int
        ),
    )
    perb = np.abs(rng.normal(0.001, 0.001, size=num_matches))
    sift_dists = np.clip(rng.normal(mu_fs, sigma_fs, size=num_matches), 0, 1) + perb
    sortx = np.argsort(sift_dists)
    local_feat_simvecs = np.vstack([sift_dists]).T[sortx]
    local_simvec = local_feat_simvecs[0:num_top]
    yaw1 = case1['yaw']
    yaw2 = case2['yaw']
    global_simvec = np.array(
        [
            case1['qual'],
            case2['qual'],
            yaw1 / vt.TAU,
            yaw2 / vt.TAU,
            vt.ori_distance(yaw1, yaw2) / np.pi,
            np.abs(case1['qual'] - case1['qual']),
        ]
    )
    simvec = np.hstack([global_simvec, local_simvec.ravel()])
    return simvec
Exemple #2
0
def make_test_pairwise_labels2(cases1, cases2):
    import vtool as vt

    is_same = np.array(cases1['name']) == np.array(cases2['name'])
    yaw1 = np.array(cases1['yaw'])
    yaw2 = np.array(cases2['yaw'])
    yaw_dist = vt.ori_distance(yaw1, yaw2) / np.pi

    qual1 = np.array(cases1['qual'])
    qual2 = np.array(cases2['qual'])

    _and = np.logical_and
    _or = np.logical_or
    _not = np.logical_not

    poorqual = _or(qual1 < 2, qual2 < 2)
    bestqual = _and(_or(qual1 > 3, qual2 > 3), _not(poorqual))
    goodqual = _and(_not(bestqual), _not(poorqual))

    is_comp = _or.reduce(
        [
            _not(poorqual),
            _and(bestqual, yaw_dist <= (1 / 4)),
            _and(goodqual, yaw_dist <= (1 / 8)),
        ]
    )

    label = is_same.astype(np.int32)
    label[_not(is_comp)] = 2
    return label
Exemple #3
0
def make_test_pairwise_fetaures(case1, case2, label, rng):
    import vtool as vt
    mu_fm = 50 if label == 1 else 10
    sigma_fm = 10 if label == 1 else 20
    mu_fs = .2 if label == 1 else .4
    sigma_fs = .1 if label == 1 else .1
    num_top = 4
    max_feats = min(case1['nfeats'], case2['nfeats'])
    num_matches = np.clip(rng.normal(mu_fm, sigma_fm, size=1)[0], num_top + 1, max_feats).astype(np.int),
    perb = np.abs(rng.normal(.001, .001, size=num_matches))
    sift_dists = np.clip(rng.normal(mu_fs, sigma_fs, size=num_matches), 0, 1) + perb
    sortx = np.argsort(sift_dists)
    local_feat_simvecs = np.vstack([sift_dists]).T[sortx]
    local_simvec = local_feat_simvecs[0:num_top]
    yaw1 = case1['yaw']
    yaw2 = case2['yaw']
    global_simvec = np.array([
        case1['qual'],
        case2['qual'],
        yaw1 / vt.TAU,
        yaw2 / vt.TAU,
        vt.ori_distance(yaw1, yaw2) / np.pi,
        np.abs(case1['qual'] - case1['qual']),
    ])
    simvec = np.hstack([global_simvec, local_simvec.ravel()])
    return simvec
Exemple #4
0
    def make_test_similarity(test_case):
        # toy_params = {
        #    True:  {'mu': 0.9, 'sigma': .1},
        #    False: {'mu': 0.1, 'sigma': .4}
        # }
        # tau = np.pi * 2
        from wbia import constants as const

        # view_to_ori = const.VIEWTEXT_TO_YAW_RADIANS
        view_to_ori = ut.map_dict_keys(
            lambda x: const.YAWALIAS[x], const.VIEWTEXT_TO_YAW_RADIANS
        )
        # view_to_ori = {
        #     'F': -1 * tau / 4,
        #     'L':  0 * tau / 4,
        #     'B':  1 * tau / 4,
        #     'R':  2 * tau / 4,
        # }
        import vtool as vt

        nid_list = np.array(ut.dict_take_column(test_case, 'name'))
        yaw_list = np.array(
            ut.dict_take(view_to_ori, ut.dict_take_column(test_case, 'view'))
        )

        rng = np.random.RandomState(0)
        pmat = []
        for idx in range(len(test_case)):
            nid = nid_list[idx]
            yaw = yaw_list[idx]
            p_same = nid == nid_list
            p_comp = 1 - vt.ori_distance(yaw_list, yaw) / np.pi
            # estimate noisy measurements
            p_same_m = np.clip(p_same + rng.normal(0, 0.5, size=len(p_same)), 0, 0.9)
            p_comp_m = np.clip(p_comp + rng.normal(0, 0.5, size=len(p_comp)), 0, 0.9)
            #
            p_same_and_comp = p_same_m * p_comp_m
            pmat.append(p_same_and_comp)
        #
        P = np.array(pmat)
        P[np.diag_indices(len(P))] = 0
        P = P + P.T / 2
        P = np.clip(P, 0.01, 0.99)
        logger.info(ut.hz_str(' P = ', ut.repr2(P, precision=2, max_line_width=140)))
        return P
Exemple #5
0
def make_test_pairwise_labels(case1, case2):
    import vtool as vt
    is_same = case1['name'] == case2['name']
    yaw1 = case1['yaw']
    yaw2 = case2['yaw']
    yaw_dist = vt.ori_distance(yaw1, yaw2) / np.pi
    if case1['qual'] < 2 or case2['qual'] < 2:
        # Bad quality means not comparable
        is_comp = False
    else:
        if case1['qual'] > 3 or case2['qual'] > 3:
            # Better quality, better chance of being comparable
            is_comp = yaw_dist <= (1 / 4)
        else:
            is_comp = yaw_dist <= (1 / 8)
    if is_comp:
        label = int(is_same)
    else:
        label = 2
    return label
Exemple #6
0
def make_test_pairwise_labels(case1, case2):
    import vtool as vt
    is_same = case1['name'] == case2['name']
    yaw1 = case1['yaw']
    yaw2 = case2['yaw']
    yaw_dist = vt.ori_distance(yaw1, yaw2) / np.pi
    if case1['qual'] < 2 or case2['qual'] < 2:
        # Bad quality means not comparable
        is_comp = False
    else:
        if case1['qual'] > 3 or case2['qual'] > 3:
            # Better quality, better chance of being comparable
            is_comp = yaw_dist <= (1 / 4)
        else:
            is_comp = yaw_dist <= (1 / 8)
    if is_comp:
        label = int(is_same)
    else:
        label = 2
    return label
Exemple #7
0
    def make_test_similarity(test_case):
        #toy_params = {
        #    True:  {'mu': 0.9, 'sigma': .1},
        #    False: {'mu': 0.1, 'sigma': .4}
        #}
        # tau = np.pi * 2
        from ibeis import constants as const
        # view_to_ori = const.VIEWTEXT_TO_YAW_RADIANS
        view_to_ori = ut.map_dict_keys(lambda x: const.YAWALIAS[x], const.VIEWTEXT_TO_YAW_RADIANS)
        # view_to_ori = {
        #     'F': -1 * tau / 4,
        #     'L':  0 * tau / 4,
        #     'B':  1 * tau / 4,
        #     'R':  2 * tau / 4,
        # }
        import vtool as vt

        nid_list = np.array(ut.dict_take_column(test_case, 'name'))
        yaw_list = np.array(ut.dict_take(view_to_ori, ut.dict_take_column(test_case, 'view')))

        rng = np.random.RandomState(0)
        pmat = []
        for idx in range(len(test_case)):
            nid = nid_list[idx]
            yaw = yaw_list[idx]
            p_same = nid == nid_list
            p_comp = 1 - vt.ori_distance(yaw_list, yaw) / np.pi
            # estimate noisy measurements
            p_same_m = np.clip(p_same + rng.normal(0, .5, size=len(p_same)), 0, .9)
            p_comp_m = np.clip(p_comp + rng.normal(0, .5, size=len(p_comp)), 0, .9)
            #
            p_same_and_comp = p_same_m * p_comp_m
            pmat.append(p_same_and_comp)
        #
        P = np.array(pmat)
        P[np.diag_indices(len(P))] = 0
        P = P + P.T / 2
        P = np.clip(P, .01, .99)
        print(ut.hz_str(' P = ', ut.array_repr2(P, precision=2, max_line_width=140)))
        return P
Exemple #8
0
def make_test_pairwise_labels2(cases1, cases2):
    import vtool as vt
    is_same = np.array(cases1['name']) == np.array(cases2['name'])
    yaw1 = np.array(cases1['yaw'])
    yaw2 = np.array(cases2['yaw'])
    yaw_dist = vt.ori_distance(yaw1, yaw2) / np.pi

    qual1 = np.array(cases1['qual'])
    qual2 = np.array(cases2['qual'])

    _and = np.logical_and
    _or = np.logical_or
    _not = np.logical_not

    poorqual = _or(qual1 < 2, qual2 < 2)
    bestqual = _and(_or(qual1 > 3, qual2 > 3), _not(poorqual))
    goodqual = _and(_not(bestqual), _not(poorqual))

    is_comp = _or.reduce([_not(poorqual), _and(bestqual, yaw_dist <= (1 / 4)), _and(goodqual, yaw_dist <= (1 / 8))])

    label = is_same.astype(np.int32)
    label[_not(is_comp)] = 2
    return label