Exemple #1
0
 def cnn_class_binary(self):
     """Create ConvNet with prediction layer."""
     return ConvNet(name='Test_ConvNet_class',
                    in_dim=(1, 28, 28),
                    config={
                        'conv_units': [{
                            "in_channels": 10,
                            "out_channels": 16,
                            "kernel_size": (5, 5),
                            "stride": 2
                        }, {
                            "in_channels": 16,
                            "out_channels": 1,
                            "kernel_size": (5, 5),
                            "stride": 1,
                            "padding": 2
                        }]
                    },
                    num_classes=2)
 def cnn_class(self):
     """Create ConvNet with classes fixture."""
     from vulcanai.models.cnn import ConvNet
     return ConvNet(name='Test_ConvNet_class',
                    in_dim=(1, 28, 28),
                    config={
                        'conv_units': [{
                            "in_channels": 1,
                            "out_channels": 16,
                            "kernel_size": (5, 5),
                            "stride": 1,
                            "padding": 2
                        }, {
                            "in_channels": 16,
                            "out_channels": 1,
                            "kernel_size": (5, 5),
                            "stride": 1,
                            "padding": 2
                        }]
                    },
                    num_classes=3)
Exemple #3
0
 def cnn_noclass(self):
     """Create intermediate conv module."""
     return ConvNet(
         name='Test_ConvNet_noclass',
         in_dim=(1, 28, 28),
         config={
             'conv_units': [
                 {
                     "in_channels": 1,
                     "out_channels": 16,
                     "kernel_size": (5, 5),
                     "stride": 2
                 },
                 {
                     "in_channels": 16,
                     "out_channels": 1,
                     "kernel_size": (5, 5),
                     "stride": 1,
                     "padding": 2
                 }]
         },
     )