Exemple #1
0
def create_model(args, initial_mean_value, overal_maxlen, vocab):

    import keras.backend as K
    from keras.layers.embeddings import Embedding
    from keras.models import Sequential, Model
    from keras.layers.core import Dense, Dropout, Activation
    from nea.my_layers import Attention, MeanOverTime, Conv1DWithMasking

    ###############################################################################################################################
    ## Recurrence unit type
    #

    if args.recurrent_unit == 'lstm':
        from keras.layers.recurrent import LSTM as RNN
    elif args.recurrent_unit == 'gru':
        from keras.layers.recurrent import GRU as RNN
    elif args.recurrent_unit == 'simple':
        from keras.layers.recurrent import SimpleRNN as RNN

    ###############################################################################################################################
    ## Create Model
    #

    dropout_W = 0.5  # default=0.5
    dropout_U = 0.1  # default=0.1
    cnn_border_mode = 'same'
    if initial_mean_value.ndim == 0:  #expand the dims
        initial_mean_value = np.expand_dims(initial_mean_value, axis=1)
    num_outputs = len(initial_mean_value)  #预测的分数种类数

    if args.model_type == 'cls':
        raise NotImplementedError

    #embedding-->cnn-->rnn(return_sequence=false)-->dropout-->dense-->sigmoid
    elif args.model_type == 'reg':
        logger.info('Building a REGRESSION model')
        model = Sequential()
        #确定是否将输入中的‘0’看作是应该被忽略的‘填充’(padding)值设置为True的话,模型中后续的层必须都支持masking,否则会抛出异常。
        #如果该值为True,则下标0在字典中不可用,input_dim应设置为|vocabulary| + 1
        #此处,input层省略是因为input_length有默认值
        model.add(Embedding(args.vocab_size, args.emb_dim, mask_zero=True))
        if args.cnn_dim > 0:  #border_mode==padding?? subsample_length==pooling?? where is the activation??
            model.add(
                Conv1DWithMasking(nb_filter=args.cnn_dim,
                                  filter_length=args.cnn_window_size,
                                  border_mode=cnn_border_mode,
                                  subsample_length=1))
        if args.rnn_dim > 0:  #return_sequence 只返回最后一个 state
            model.add(
                RNN(args.rnn_dim,
                    return_sequences=False,
                    dropout_W=dropout_W,
                    dropout_U=dropout_U))
        if args.dropout_prob > 0:
            model.add(Dropout(args.dropout_prob))
        model.add(Dense(num_outputs))
        if not args.skip_init_bias:  #初始化最后一层layer的bias
            bias_value = (np.log(initial_mean_value) -
                          np.log(1 - initial_mean_value)).astype(K.floatx())
            model.layers[-1].b.set_value(bias_value)
        model.add(Activation('sigmoid'))  #输出区间为(0,1)
        #设置model的embed层的序号,方便后续用预训练词向量的初始化,model的所有层都存在  model.layers 里
        model.emb_index = 0

    #embedding-->cnn-->rnn(return_sequence=true)-->dropout-->MeanoverTime or Attention(mean or sum)-->Dense-->sigmoid
    elif args.model_type == 'regp':
        logger.info('Building a REGRESSION model with POOLING')
        model = Sequential()
        model.add(Embedding(args.vocab_size, args.emb_dim, mask_zero=True))
        if args.cnn_dim > 0:
            model.add(
                Conv1DWithMasking(nb_filter=args.cnn_dim,
                                  filter_length=args.cnn_window_size,
                                  border_mode=cnn_border_mode,
                                  subsample_length=1))
        if args.rnn_dim > 0:
            model.add(
                RNN(args.rnn_dim,
                    return_sequences=True,
                    dropout_W=dropout_W,
                    dropout_U=dropout_U))
        if args.dropout_prob > 0:
            model.add(Dropout(args.dropout_prob))
        if args.aggregation == 'mot':
            model.add(MeanOverTime(mask_zero=True))
        elif args.aggregation.startswith('att'):
            model.add(
                Attention(op=args.aggregation,
                          activation='tanh',
                          init_stdev=0.01))
        model.add(Dense(num_outputs))
        if not args.skip_init_bias:
            bias_value = (np.log(initial_mean_value) -
                          np.log(1 - initial_mean_value)).astype(K.floatx())
            model.layers[-1].b.set_value(bias_value)
        model.add(Activation('sigmoid'))
        model.emb_index = 0
    #embedding-->cnn-->birnn(return_sequence=false)-->dropout-->merge(concat the forRnn&backRnn)-->dense-->sigmoid
    elif args.model_type == 'breg':
        logger.info('Building a BIDIRECTIONAL REGRESSION model')
        from keras.layers import Dense, Dropout, Embedding, LSTM, Input, merge
        model = Sequential()  #这句应该是多余的
        sequence = Input(shape=(overal_maxlen, ), dtype='int32')
        output = Embedding(args.vocab_size, args.emb_dim,
                           mask_zero=True)(sequence)
        if args.cnn_dim > 0:
            output = Conv1DWithMasking(nb_filter=args.cnn_dim,
                                       filter_length=args.cnn_window_size,
                                       border_mode=cnn_border_mode,
                                       subsample_length=1)(output)
        if args.rnn_dim > 0:
            forwards = RNN(args.rnn_dim,
                           return_sequences=False,
                           dropout_W=dropout_W,
                           dropout_U=dropout_U)(output)
            backwards = RNN(args.rnn_dim,
                            return_sequences=False,
                            dropout_W=dropout_W,
                            dropout_U=dropout_U,
                            go_backwards=True)(output)
        if args.dropout_prob > 0:
            forwards = Dropout(args.dropout_prob)(forwards)
            backwards = Dropout(args.dropout_prob)(backwards)
        merged = merge([forwards, backwards], mode='concat', concat_axis=-1)
        densed = Dense(num_outputs)(merged)
        if not args.skip_init_bias:
            raise NotImplementedError
        score = Activation('sigmoid')(densed)
        model = Model(input=sequence, output=score)
        model.emb_index = 1
    #embedding-->cnn-->biRnn(return_sequence=true)-->dropout-->meanOverTime-->merge(concat)-->dense-->sigmoid
    elif args.model_type == 'bregp':
        logger.info('Building a BIDIRECTIONAL REGRESSION model with POOLING')
        from keras.layers import Dense, Dropout, Embedding, LSTM, Input, merge
        model = Sequential()  #多余的
        sequence = Input(shape=(overal_maxlen, ), dtype='int32')
        output = Embedding(args.vocab_size, args.emb_dim,
                           mask_zero=True)(sequence)
        if args.cnn_dim > 0:
            output = Conv1DWithMasking(nb_filter=args.cnn_dim,
                                       filter_length=args.cnn_window_size,
                                       border_mode=cnn_border_mode,
                                       subsample_length=1)(output)
        if args.rnn_dim > 0:
            forwards = RNN(args.rnn_dim,
                           return_sequences=True,
                           dropout_W=dropout_W,
                           dropout_U=dropout_U)(output)
            backwards = RNN(args.rnn_dim,
                            return_sequences=True,
                            dropout_W=dropout_W,
                            dropout_U=dropout_U,
                            go_backwards=True)(output)
        if args.dropout_prob > 0:
            forwards = Dropout(args.dropout_prob)(forwards)
            backwards = Dropout(args.dropout_prob)(backwards)
        forwards_mean = MeanOverTime(mask_zero=True)(forwards)
        backwards_mean = MeanOverTime(mask_zero=True)(backwards)
        merged = merge([forwards_mean, backwards_mean],
                       mode='concat',
                       concat_axis=-1)
        densed = Dense(num_outputs)(merged)
        if not args.skip_init_bias:
            raise NotImplementedError
        score = Activation('sigmoid')(densed)
        model = Model(input=sequence, output=score)
        model.emb_index = 1

    logger.info('  Done')

    ###############################################################################################################################
    ## Initialize embeddings if requested
    #

    if args.emb_path:
        from w2vEmbReader import W2VEmbReader as EmbReader
        logger.info('Initializing lookup table')
        emb_reader = EmbReader(args.emb_path, emb_dim=args.emb_dim)
        model.layers[model.emb_index].W.set_value(
            emb_reader.get_emb_matrix_given_vocab(
                vocab, model.layers[model.emb_index].W.get_value()))
        logger.info('  Done')

    return model
Exemple #2
0
def create_model(args, maxlen, vocab):
    def ortho_reg(weight_matrix):
        ### orthogonal regularization for aspect embedding matrix ###
        w_n = K.l2_normalize(weight_matrix, axis=-1)
        reg = K.sum(
            K.square(
                K.dot(w_n, K.transpose(w_n)) -
                K.eye(w_n.get_shape().as_list()[0])))
        return args.ortho_reg * reg

    vocab_size = len(vocab)
    if args.emb_name:
        from w2vEmbReader import W2VEmbReader as EmbReader
        emb_reader = EmbReader(
            os.path.join("..", "preprocessed_data", args.domain),
            args.emb_name)
        aspect_matrix = emb_reader.get_aspect_matrix(args.aspect_size)
        args.aspect_size = emb_reader.aspect_size
        args.emb_dim = emb_reader.emb_dim

    ##### Inputs #####
    sentence_input = Input(shape=(maxlen, ),
                           dtype='int32',
                           name='sentence_input')
    neg_input = Input(shape=(args.neg_size, maxlen),
                      dtype='int32',
                      name='neg_input')

    ##### Construct word embedding layer #####
    word_emb = Embedding(vocab_size,
                         args.emb_dim,
                         mask_zero=True,
                         name='word_emb',
                         embeddings_constraint=MaxNorm(10))

    ##### Compute sentence representation #####
    e_w = word_emb(sentence_input)
    y_s = Average()(e_w)
    att_weights = Attention(name='att_weights',
                            W_constraint=MaxNorm(10),
                            b_constraint=MaxNorm(10))([e_w, y_s])
    z_s = WeightedSum()([e_w, att_weights])

    ##### Compute representations of negative instances #####
    e_neg = word_emb(neg_input)
    z_n = Average()(e_neg)

    ##### Reconstruction #####
    p_t = Dense(args.aspect_size)(z_s)
    p_t = Activation('softmax', name='p_t')(p_t)
    r_s = WeightedAspectEmb(args.aspect_size,
                            args.emb_dim,
                            name='aspect_emb',
                            W_constraint=MaxNorm(10),
                            W_regularizer=ortho_reg)(p_t)

    ##### Loss #####
    loss = MaxMargin(name='max_margin')([z_s, z_n, r_s])
    model = Model(inputs=[sentence_input, neg_input], outputs=[loss])

    ### Word embedding and aspect embedding initialization ######
    if args.emb_name:
        from w2vEmbReader import W2VEmbReader as EmbReader
        logger.info('Initializing word embedding matrix')
        embs = model.get_layer('word_emb').embeddings
        K.set_value(
            embs,
            emb_reader.get_emb_matrix_given_vocab(vocab, K.get_value(embs)))
        logger.info(
            'Initializing aspect embedding matrix as centroid of kmean clusters'
        )
        K.set_value(model.get_layer('aspect_emb').W, aspect_matrix)

    return model
Exemple #3
0
def create_model(args, initial_mean_value, overal_maxlen, vocab):
    import keras.backend as K
    from keras.layers.embeddings import Embedding
    from keras.models import Sequential, Model
    from keras.layers.core import Dense, Dropout, Activation, Flatten
    from nea.my_layers import Attention, MeanOverTime, Conv1DWithMasking

    ###############################################################################################################################
    ## Recurrence unit type
    #

    if args.recurrent_unit == 'lstm':
        from keras.layers.recurrent import LSTM as RNN
    elif args.recurrent_unit == 'gru':
        from keras.layers.recurrent import GRU as RNN
    elif args.recurrent_unit == 'simple':
        from keras.layers.recurrent import SimpleRNN as RNN

    ###############################################################################################################################
    ## Create Model
    #

    dropout_W = 0.5  # default=0.5
    dropout_U = 0.1  # default=0.1
    cnn_border_mode = 'same'
    if initial_mean_value.ndim == 0:
        initial_mean_value = np.expand_dims(initial_mean_value, axis=0)
    num_outputs = len(initial_mean_value)

    if args.model_type == 'cls':
        raise NotImplementedError

    elif args.model_type == 'reg':
        logger.info('Building a REGRESSION model')
        model = Sequential()
        model.add(Embedding(args.vocab_size, args.emb_dim, mask_zero=True))
        if args.cnn_dim > 0:
            model.add(
                Conv1DWithMasking(nb_filter=args.cnn_dim,
                                  filter_length=args.cnn_window_size,
                                  border_mode=cnn_border_mode,
                                  subsample_length=1))
        if args.rnn_dim > 0:
            model.add(
                RNN(args.rnn_dim,
                    return_sequences=False,
                    dropout=dropout_W,
                    recurrent_dropout=dropout_U))
        if args.dropout_prob > 0:
            model.add(Dropout(args.dropout_prob))
        model.add(Dense(num_outputs))
        if not args.skip_init_bias:
            bias_value = (np.log(initial_mean_value) -
                          np.log(1 - initial_mean_value)).astype(K.floatx())
            model.layers[-1].b.set_value(bias_value)
        model.add(Activation('sigmoid'))
        model.emb_index = 0

    elif args.model_type == 'regp':
        logger.info('Building a REGRESSION model with POOLING')
        model = Sequential()
        model.add(Embedding(args.vocab_size, args.emb_dim, mask_zero=True))
        if args.cnn_dim > 0:
            model.add(
                Conv1DWithMasking(nb_filter=args.cnn_dim,
                                  filter_length=args.cnn_window_size,
                                  border_mode=cnn_border_mode,
                                  subsample_length=1))
        if args.rnn_dim > 0:
            model.add(
                RNN(args.rnn_dim,
                    return_sequences=True,
                    dropout=dropout_W,
                    recurrent_dropout=dropout_U))
        if args.dropout_prob > 0:
            model.add(Dropout(args.dropout_prob))
        if args.aggregation == 'mot':
            model.add(MeanOverTime(mask_zero=True))
        elif args.aggregation.startswith('att'):
            model.add(
                Attention(op=args.aggregation,
                          activation='tanh',
                          init_stdev=0.01))
        model.add(Dense(num_outputs))
        if not args.skip_init_bias:
            bias_value = (np.log(initial_mean_value) -
                          np.log(1 - initial_mean_value)).astype(K.floatx())
            model.layers[-1].bias = bias_value
        model.add(Activation('sigmoid'))
        model.emb_index = 0

    elif args.model_type == 'breg':
        logger.info('Building a BIDIRECTIONAL REGRESSION model')
        from keras.layers import Dense, Dropout, Embedding, LSTM, Input, merge
        model = Sequential()
        sequence = Input(shape=(overal_maxlen, ), dtype='int32')
        output = Embedding(args.vocab_size, args.emb_dim,
                           mask_zero=True)(sequence)
        if args.cnn_dim > 0:
            output = Conv1DWithMasking(nb_filter=args.cnn_dim,
                                       filter_length=args.cnn_window_size,
                                       border_mode=cnn_border_mode,
                                       subsample_length=1)(output)
        if args.rnn_dim > 0:
            forwards = RNN(args.rnn_dim,
                           return_sequences=False,
                           dropout=dropout_W,
                           recurrent_dropout=dropout_U)(output)
            backwards = RNN(args.rnn_dim,
                            return_sequences=False,
                            dropout=dropout_W,
                            recurrent_dropout=dropout_U,
                            go_backwards=True)(output)
        if args.dropout_prob > 0:
            forwards = Dropout(args.dropout_prob)(forwards)
            backwards = Dropout(args.dropout_prob)(backwards)
        merged = merge([forwards, backwards], mode='concat', concat_axis=-1)
        densed = Dense(num_outputs)(merged)
        if not args.skip_init_bias:
            raise NotImplementedError
        score = Activation('sigmoid')(densed)
        model = Model(input=sequence, output=score)
        model.emb_index = 1

    elif args.model_type == 'bregp':
        logger.info('Building a BIDIRECTIONAL REGRESSION model with POOLING')
        from keras.layers import Dense, Dropout, Embedding, LSTM, Input, merge
        model = Sequential()
        sequence = Input(shape=(overal_maxlen, ), dtype='int32')
        output = Embedding(args.vocab_size, args.emb_dim,
                           mask_zero=True)(sequence)
        if args.cnn_dim > 0:
            output = Conv1DWithMasking(nb_filter=args.cnn_dim,
                                       filter_length=args.cnn_window_size,
                                       border_mode=cnn_border_mode,
                                       subsample_length=1)(output)
        if args.rnn_dim > 0:
            forwards = RNN(args.rnn_dim,
                           return_sequences=True,
                           dropout=dropout_W,
                           recurrent_dropout=dropout_U)(output)
            backwards = RNN(args.rnn_dim,
                            return_sequences=True,
                            dropout=dropout_W,
                            recurrent_dropout=dropout_U,
                            go_backwards=True)(output)
        if args.dropout_prob > 0:
            forwards = Dropout(args.dropout_prob)(forwards)
            backwards = Dropout(args.dropout_prob)(backwards)
        forwards_mean = MeanOverTime(mask_zero=True)(forwards)
        backwards_mean = MeanOverTime(mask_zero=True)(backwards)
        merged = merge([forwards_mean, backwards_mean],
                       mode='concat',
                       concat_axis=-1)
        densed = Dense(num_outputs)(merged)
        if not args.skip_init_bias:
            raise NotImplementedError
        score = Activation('sigmoid')(densed)
        model = Model(input=sequence, output=score)
        model.emb_index = 1

    logger.info('  Done')

    ###############################################################################################################################
    ## Initialize embeddings if requested
    #

    if args.emb_path:
        from w2vEmbReader import W2VEmbReader as EmbReader
        logger.info('Initializing lookup table')
        emb_reader = EmbReader(args.emb_path, emb_dim=args.emb_dim)
        model.layers[model.emb_index].set_weights(
            emb_reader.get_emb_matrix_given_vocab(
                vocab, model.layers[model.emb_index].get_weights()))
        logger.info('  Done')

    return model