def main(argv): options = handle_options('set', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) empty_set_args = {'initializer': tf.random_uniform_initializer} set_adt, set_pdt = gen_set_adt(X_train, options, store_args=options, is_in_args=options, size_args=options, is_empty_args=options, empty_set_args=empty_set_args, nitems=options['nitems'], batch_size=options['batch_size']) graph = tf.get_default_graph() savedir = mk_dir(sfx) path_name = os.path.join( os.environ['DATADIR'], 'graphs', sfx, ) tf.train.SummaryWriter(path_name, graph) load_train_save(options, set_adt, set_pdt, sfx, savedir) push, pop = pdt.call_fns
def prep_save(sess: Session, save: bool, dirname: str, params_file: str, load: bool): save_params = {} if save or load: saver = tf.train.Saver() if save is True: savedir = mk_dir(dirname=dirname) save_params['savedir'] = savedir save_params['saver'] = saver = tf.train.Saver() if load is True: saver.restore(sess, params_file) return save_params
def main(argv): global adt, pdt, sess options = handle_options('number', argv) sfx = gen_sfx_key(('adt', 'template', 'nblocks', 'block_size'), options) zero_args = {'initializer': tf.random_uniform_initializer} adt, pdt = gen_number_adt(options, number_shape=(10, ), succ_args=options, add_args=options, mul_args=options, encode_args=options, decode_args=options, zero_args=zero_args, batch_size=options['batch_size']) savedir = mk_dir(sfx) sess = load_train_save(options, adt, pdt, sfx, savedir)
def main(argv): global queue_adt, queue_pdt, sess, X_train, sfx options = handle_options('queue', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) empty_queue_args = {'initializer': tf.random_uniform_initializer} queue_adt, queue_pdt = gen_queue_adt(X_train, options, enqueue_args=options, nitems=options['nitems'], dequeue_args=options, empty_queue_args=empty_queue_args, batch_size=options['batch_size']) savedir = mk_dir(sfx) sess = load_train_save(options, queue_adt, queue_pdt, sfx, savedir)
def main(argv): global adt, pdt, sess, X_train, sfx options = handle_options('eqstack', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) #sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) sfx = gen_sfx_key(('adt', 'nitems'), options) empty_eqstack_args = {'initializer': tf.random_uniform_initializer} adt, pdt = eqstack_adt(X_train, options, push_args=options, nitems=options['nitems'], pop_args=options, empty_eqstack_args=empty_eqstack_args, batch_size=options['batch_size']) savedir = mk_dir(sfx) sess = load_train_save(options, adt, pdt, sfx, savedir)
def main(argv): global adt, pdt, sess, X_train, sfx options = handle_options('queue', argv) mnist_data = load_dataset() X_train = mnist_data[0].reshape(-1, 28, 28, 1) #sfx = gen_sfx_key(('adt', 'nblocks', 'block_size'), options) sfx = gen_sfx_key(('adt', 'nitems'), options) empty_queue_args = {'initializer': tf.random_uniform_initializer} adt, pdt = queue_adt(X_train, options, push_args=options, nitems=options['nitems'], pop_args=options, empty_queue_args=empty_queue_args, batch_size=options['batch_size']) datadir = os.path.join(os.environ['DATADIR'], "pdt") savedir = mk_dir(sfx, datadir=datadir) options['sfx'] = sfx sess = train(adt, pdt, options, savedir, sfx)