Exemple #1
0
def calculate_reflectance(
    acquisition,
    interpolation_group,
    satellite_solar_group,
    slope_aspect_group,
    relative_slope_group,
    incident_angles_group,
    exiting_angles_group,
    shadow_masks_group,
    ancillary_group,
    rori,
    out_group=None,
    compression=H5CompressionFilter.LZF,
    filter_opts=None,
    normalized_solar_zenith=45.0,
    esun=None,
):
    """
    Calculates Lambertian, BRDF corrected and BRDF + terrain
    illumination corrected surface reflectance.

    :param acquisition:
        An instance of an acquisition object.

    :param interpolation_group:
        The root HDF5 `Group` that contains the interpolated
        atmospheric coefficients.
        The dataset pathnames are given by:

        * DatasetName.INTERPOLATION_FMT

    :param satellite_solar_group:
        The root HDF5 `Group` that contains the solar zenith and
        solar azimuth datasets specified by the pathnames given by:

        * DatasetName.SOLAR_ZENITH
        * DatasetName.SOLAR_AZIMUTH
        * DatasetName.SATELLITE_VIEW
        * DatasetName.SATELLITE_AZIMUTH
        * DatasetName.RELATIVE_AZIMUTH

    :param slope_aspect_group:
        The root HDF5 `Group` that contains the slope and aspect
        datasets specified by the pathnames given by:

        * DatasetName.SLOPE
        * DatasetName.ASPECT

    :param relative_slope_group:
        The root HDF5 `Group` that contains the relative slope dataset
        specified by the pathname given by:

        * DatasetName.RELATIVE_SLOPE

    :param incident_angles_group:
        The root HDF5 `Group` that contains the incident
        angle dataset specified by the pathname given by:

        * DatasetName.INCIDENT

    :param exiting_angles_group:
        The root HDF5 `Group` that contains the exiting
        angle dataset specified by the pathname given by:

        * DatasetName.EXITING

    :param shadow_masks_group:
        The root HDF5 `Group` that contains the combined shadow
        masks; self shadow, cast shadow (solar),
        cast shadow (satellite), dataset specified by the pathname
        given by:

        * DatasetName.COMBINED_SHADOW

    :param ancillary_group:
        The root HDF5 `Group` that contains the Isotropic (iso),
        RossThick (vol), and LiSparseR (geo) BRDF scalar parameters.
        The dataset pathnames are given by:

        * DatasetName.BRDF_FMT

    :param rori:
        Threshold for terrain correction. Fuqin to document.

    :param out_group:
        If set to None (default) then the results will be returned
        as an in-memory hdf5 file, i.e. the `core` driver. Otherwise,
        a writeable HDF5 `Group` object.

        The dataset names will be given by the format string detailed
        by:

        * DatasetName.REFLECTANCE_FMT

        The reflectance products are:

        * lambertian
        * nbar (BRDF corrected reflectance)
        * nbart (BRDF + terrain illumination corrected reflectance)

    :param compression:
        The compression filter to use.
        Default is H5CompressionFilter.LZF

    :param filter_opts:
        A dict of key value pairs available to the given configuration
        instance of H5CompressionFilter. For example
        H5CompressionFilter.LZF has the keywords *chunks* and *shuffle*
        available.
        Default is None, which will use the default settings for the
        chosen H5CompressionFilter instance.

    :param normalized_solar_zenith:
        A float value type to normalize reflectance to a particular angle.

    :param esun
        A float value type. A solar solar irradiance normal to atmosphere
        in unit of W/sq cm/sr/nm.

    :return:
        An opened `h5py.File` object, that is either in-memory using the
        `core` driver, or on disk.
    """
    geobox = acquisition.gridded_geo_box()
    bn = acquisition.band_name

    dname_fmt = DatasetName.INTERPOLATION_FMT.value
    fv_dataset = interpolation_group[dname_fmt.format(coefficient=AC.FV.value,
                                                      band_name=bn)]
    fs_dataset = interpolation_group[dname_fmt.format(coefficient=AC.FS.value,
                                                      band_name=bn)]
    b_dataset = interpolation_group[dname_fmt.format(coefficient=AC.B.value,
                                                     band_name=bn)]
    s_dataset = interpolation_group[dname_fmt.format(coefficient=AC.S.value,
                                                     band_name=bn)]
    a_dataset = interpolation_group[dname_fmt.format(coefficient=AC.A.value,
                                                     band_name=bn)]
    dir_dataset = interpolation_group[dname_fmt.format(
        coefficient=AC.DIR.value, band_name=bn)]
    dif_dataset = interpolation_group[dname_fmt.format(
        coefficient=AC.DIF.value, band_name=bn)]
    ts_dataset = interpolation_group[dname_fmt.format(coefficient=AC.TS.value,
                                                      band_name=bn)]
    solar_zenith_dset = satellite_solar_group[DatasetName.SOLAR_ZENITH.value]
    solar_azimuth_dset = satellite_solar_group[DatasetName.SOLAR_AZIMUTH.value]
    satellite_v_dset = satellite_solar_group[DatasetName.SATELLITE_VIEW.value]
    relative_a_dset = satellite_solar_group[DatasetName.RELATIVE_AZIMUTH.value]
    slope_dataset = slope_aspect_group[DatasetName.SLOPE.value]
    aspect_dataset = slope_aspect_group[DatasetName.ASPECT.value]
    relative_s_dset = relative_slope_group[DatasetName.RELATIVE_SLOPE.value]
    incident_angle_dataset = incident_angles_group[DatasetName.INCIDENT.value]
    exiting_angle_dataset = exiting_angles_group[DatasetName.EXITING.value]
    shadow_dataset = shadow_masks_group[DatasetName.COMBINED_SHADOW.value]

    dname_fmt = DatasetName.BRDF_FMT.value
    dname = dname_fmt.format(band_name=bn,
                             parameter=BrdfDirectionalParameters.ALPHA_1.value)
    brdf_alpha1 = ancillary_group[dname][()]

    dname = dname_fmt.format(band_name=bn,
                             parameter=BrdfDirectionalParameters.ALPHA_2.value)
    brdf_alpha2 = ancillary_group[dname][()]

    # Initialise the output file
    if out_group is None:
        fid = h5py.File("surface-reflectance.h5",
                        "w",
                        driver="core",
                        backing_store=False)
    else:
        fid = out_group

    if GroupName.STANDARD_GROUP.value not in fid:
        fid.create_group(GroupName.STANDARD_GROUP.value)

    if filter_opts is None:
        filter_opts = {}
    else:
        filter_opts = filter_opts.copy()
    filter_opts["chunks"] = acquisition.tile_size

    kwargs = compression.config(**filter_opts).dataset_compression_kwargs()
    grp = fid[GroupName.STANDARD_GROUP.value]
    kwargs["shape"] = (acquisition.lines, acquisition.samples)
    kwargs["fillvalue"] = NO_DATA_VALUE
    kwargs["dtype"] = "int16"

    # create the datasets
    dname_fmt = DatasetName.REFLECTANCE_FMT.value
    dname = dname_fmt.format(product=AP.LAMBERTIAN.value, band_name=bn)
    lmbrt_dset = grp.create_dataset(dname, **kwargs)

    dname = dname_fmt.format(product=AP.NBAR.value, band_name=bn)
    nbar_dset = grp.create_dataset(dname, **kwargs)

    dname = dname_fmt.format(product=AP.NBART.value, band_name=bn)
    nbart_dset = grp.create_dataset(dname, **kwargs)

    # attach some attributes to the image datasets
    attrs = {
        "crs_wkt": geobox.crs.ExportToWkt(),
        "geotransform": geobox.transform.to_gdal(),
        "no_data_value": kwargs["fillvalue"],
        "rori_threshold_setting": rori,
        "platform_id": acquisition.platform_id,
        "sensor_id": acquisition.sensor_id,
        "band_id": acquisition.band_id,
        "band_name": bn,
        "alias": acquisition.alias,
    }

    desc = "Contains the lambertian reflectance data scaled by 10000."
    attrs["description"] = desc
    attach_image_attributes(lmbrt_dset, attrs)

    desc = "Contains the brdf corrected reflectance data scaled by 10000."
    attrs["description"] = desc
    attach_image_attributes(nbar_dset, attrs)

    desc = "Contains the brdf and terrain corrected reflectance data scaled " "by 10000."
    attrs["description"] = desc
    attach_image_attributes(nbart_dset, attrs)

    # process by tile
    for tile in acquisition.tiles():
        # tile indices
        idx = (slice(tile[0][0], tile[0][1]), slice(tile[1][0], tile[1][1]))

        # define some static arguments
        acq_args = {"window": tile, "out_no_data": NO_DATA_VALUE, "esun": esun}
        f32_args = {"dtype": numpy.float32, "transpose": True}

        # Read the data corresponding to the current tile for all dataset
        # Convert the datatype if required and transpose
        band_data = as_array(acquisition.radiance_data(**acq_args), **f32_args)

        shadow = as_array(shadow_dataset[idx], numpy.int8, transpose=True)
        solar_zenith = as_array(solar_zenith_dset[idx], **f32_args)
        solar_azimuth = as_array(solar_azimuth_dset[idx], **f32_args)
        satellite_view = as_array(satellite_v_dset[idx], **f32_args)
        relative_angle = as_array(relative_a_dset[idx], **f32_args)
        slope = as_array(slope_dataset[idx], **f32_args)
        aspect = as_array(aspect_dataset[idx], **f32_args)
        incident_angle = as_array(incident_angle_dataset[idx], **f32_args)
        exiting_angle = as_array(exiting_angle_dataset[idx], **f32_args)
        relative_slope = as_array(relative_s_dset[idx], **f32_args)
        a_mod = as_array(a_dataset[idx], **f32_args)
        b_mod = as_array(b_dataset[idx], **f32_args)
        s_mod = as_array(s_dataset[idx], **f32_args)
        fs = as_array(fs_dataset[idx], **f32_args)
        fv = as_array(fv_dataset[idx], **f32_args)
        ts = as_array(ts_dataset[idx], **f32_args)
        direct = as_array(dir_dataset[idx], **f32_args)
        diffuse = as_array(dif_dataset[idx], **f32_args)

        # Allocate the output arrays
        xsize, ysize = band_data.shape  # band_data has been transposed
        ref_lm = numpy.zeros((ysize, xsize), dtype="int16")
        ref_brdf = numpy.zeros((ysize, xsize), dtype="int16")
        ref_terrain = numpy.zeros((ysize, xsize), dtype="int16")

        # Allocate the work arrays (single row of data)
        ref_lm_work = numpy.zeros(xsize, dtype="float32")
        ref_brdf_work = numpy.zeros(xsize, dtype="float32")
        ref_terrain_work = numpy.zeros(xsize, dtype="float32")

        # Run terrain correction
        reflectance(
            xsize,
            ysize,
            rori,
            brdf_alpha1,
            brdf_alpha2,
            acquisition.reflectance_adjustment,
            kwargs["fillvalue"],
            band_data,
            shadow,
            solar_zenith,
            solar_azimuth,
            satellite_view,
            relative_angle,
            slope,
            aspect,
            incident_angle,
            exiting_angle,
            relative_slope,
            a_mod,
            b_mod,
            s_mod,
            fs,
            fv,
            ts,
            direct,
            diffuse,
            ref_lm_work,
            ref_brdf_work,
            ref_terrain_work,
            ref_lm.transpose(),
            ref_brdf.transpose(),
            ref_terrain.transpose(),
            normalized_solar_zenith,
        )

        # Write the current tile to disk
        lmbrt_dset[idx] = ref_lm
        nbar_dset[idx] = ref_brdf
        nbart_dset[idx] = ref_terrain

    # close any still opened files, arrays etc associated with the acquisition
    acquisition.close()

    if out_group is None:
        return fid
Exemple #2
0
def slope_aspect_arrays(acquisition, dsm_group, buffer_distance,
                        out_group=None, compression=H5CompressionFilter.LZF,
                        filter_opts=None):
    """
    Calculates slope and aspect.

    :param acquisition:
        An instance of an acquisition object.

    :param dsm_group:
        The root HDF5 `Group` that contains the Digital Surface Model
        data.
        The dataset pathname is given by:

        * DatasetName.DSM_SMOOTHED

        The dataset must have the same dimensions as `acquisition`
        plus a margin of widths specified by margin.

    :param buffer_distance:
        A number representing the desired distance (in the same
        units as the acquisition) in which to calculate the extra
        number of pixels required to buffer an image.
        Default is 8000.

    :param out_group:
        If set to None (default) then the results will be returned
        as an in-memory hdf5 file, i.e. the `core` driver. Otherwise,
        a writeable HDF5 `Group` object.

        The dataset names will be given by the format string detailed
        by:

        * DatasetName.SLOPE
        * DatasetName.ASPECT

    :param compression:
        The compression filter to use.
        Default is H5CompressionFilter.LZF 

    :filter_opts:
        A dict of key value pairs available to the given configuration
        instance of H5CompressionFilter. For example
        H5CompressionFilter.LZF has the keywords *chunks* and *shuffle*
        available.
        Default is None, which will use the default settings for the
        chosen H5CompressionFilter instance.

    :return:
        An opened `h5py.File` object, that is either in-memory using the
        `core` driver, or on disk.
    """

    # Setup the geobox
    geobox = acquisition.gridded_geo_box()

    # Retrive the spheroid parameters
    # (used in calculating pixel size in metres per lat/lon)
    spheroid, _ = setup_spheroid(geobox.crs.ExportToWkt())

    # Are we in projected or geographic space
    is_utm = not geobox.crs.IsGeographic()

    # Define Top, Bottom, Left, Right pixel margins
    margins = pixel_buffer(acquisition, buffer_distance)

    # Get the x and y pixel sizes
    _, y_origin = geobox.origin
    x_res, y_res = geobox.pixelsize

    # Get acquisition dimensions and add 1 pixel top, bottom, left & right
    cols, rows = geobox.get_shape_xy()
    ncol = cols + 2
    nrow = rows + 2

    # elevation dataset
    elevation = dsm_group[DatasetName.DSM_SMOOTHED.value]
    ele_rows, ele_cols  = elevation.shape

    # TODO: check that the index is correct
    # Define the index to read the DEM subset
    ystart, ystop = (margins.top - 1, ele_rows - (margins.bottom - 1))
    xstart, xstop = (margins.left - 1, ele_cols - (margins.right - 1))
    idx = (slice(ystart, ystop), slice(xstart, xstop))

    subset = as_array(elevation[idx], dtype=numpy.float32, transpose=True)

    # Define an array of latitudes
    # This will be ignored if is_utm == True
    alat = numpy.array([y_origin - i * y_res for i in range(-1, nrow - 1)],
                       dtype=numpy.float64)  # yes, I did mean float64.

    # Output the reprojected result
    # Initialise the output files
    if out_group is None:
        fid = h5py.File('slope-aspect.h5', driver='core',
                        backing_store=False)
    else:
        fid = out_group

    if GroupName.SLP_ASP_GROUP.value not in fid:
        fid.create_group(GroupName.SLP_ASP_GROUP.value)

    if filter_opts is None:
        filter_opts = {}
    else:
        filter_opts = filter_opts.copy()
    filter_opts['chunks'] = acquisition.tile_size

    group = fid[GroupName.SLP_ASP_GROUP.value]

    # metadata for calculation
    param_group = group.create_group('PARAMETERS')
    param_group.attrs['dsm_index'] = ((ystart, ystop), (xstart, xstop))
    param_group.attrs['pixel_buffer'] = '1 pixel'

    kwargs = compression.config(**filter_opts).dataset_compression_kwargs()
    no_data = -999
    kwargs['fillvalue'] = no_data

    # Define the output arrays. These will be transposed upon input
    slope = numpy.zeros((rows, cols), dtype='float32')
    aspect = numpy.zeros((rows, cols), dtype='float32')

    slope_aspect(ncol, nrow, cols, rows, x_res, y_res, spheroid, alat, is_utm,
                 subset, slope.transpose(), aspect.transpose())

    # output datasets
    dname = DatasetName.SLOPE.value
    slope_dset = group.create_dataset(dname, data=slope, **kwargs)
    dname = DatasetName.ASPECT.value
    aspect_dset = group.create_dataset(dname, data=aspect, **kwargs)

    # attach some attributes to the image datasets
    attrs = {'crs_wkt': geobox.crs.ExportToWkt(),
             'geotransform': geobox.transform.to_gdal(),
             'no_data_value': no_data}
    desc = "The slope derived from the input elevation model."
    attrs['description'] = desc
    attach_image_attributes(slope_dset, attrs)

    desc = "The aspect derived from the input elevation model."
    attrs['description'] = desc
    attach_image_attributes(aspect_dset, attrs)

    if out_group is None:
        return fid
Exemple #3
0
def incident_angles(
    satellite_solar_group,
    slope_aspect_group,
    out_group=None,
    compression=H5CompressionFilter.LZF,
    filter_opts=None,
):
    """
    Calculates the incident angle and the azimuthal incident angle.

    :param satellite_solar_group:
        The root HDF5 `Group` that contains the solar zenith and
        solar azimuth datasets specified by the pathnames given by:

        * DatasetName.SOLAR_ZENITH
        * DatasetName.SOLAR_AZIMUTH

    :param slope_aspect_group:
        The root HDF5 `Group` that contains the slope and aspect
        datasets specified by the pathnames given by:

        * DatasetName.SLOPE
        * DatasetName.ASPECT

    :param out_group:
        If set to None (default) then the results will be returned
        as an in-memory hdf5 file, i.e. the `core` driver. Otherwise,
        a writeable HDF5 `Group` object.

        The dataset names will be as follows:

        * DatasetName.INCIDENT
        * DatasetName.AZIMUTHAL_INCIDENT

    :param compression:
        The compression filter to use.
        Default is H5CompressionFilter.LZF

    :filter_opts:
        A dict of key value pairs available to the given configuration
        instance of H5CompressionFilter. For example
        H5CompressionFilter.LZF has the keywords *chunks* and *shuffle*
        available.
        Default is None, which will use the default settings for the
        chosen H5CompressionFilter instance.

    :return:
        An opened `h5py.File` object, that is either in-memory using the
        `core` driver, or on disk.
    """
    # dataset arrays
    dname = DatasetName.SOLAR_ZENITH.value
    solar_zenith_dataset = satellite_solar_group[dname]
    dname = DatasetName.SOLAR_AZIMUTH.value
    solar_azimuth_dataset = satellite_solar_group[dname]
    slope_dataset = slope_aspect_group[DatasetName.SLOPE.value]
    aspect_dataset = slope_aspect_group[DatasetName.ASPECT.value]

    geobox = GriddedGeoBox.from_dataset(solar_zenith_dataset)
    shape = geobox.get_shape_yx()
    rows, cols = shape
    crs = geobox.crs.ExportToWkt()

    # Initialise the output files
    if out_group is None:
        fid = h5py.File("incident-angles.h5",
                        "w",
                        driver="core",
                        backing_store=False)
    else:
        fid = out_group

    if GroupName.INCIDENT_GROUP.value not in fid:
        fid.create_group(GroupName.INCIDENT_GROUP.value)

    if filter_opts is None:
        filter_opts = {}

    grp = fid[GroupName.INCIDENT_GROUP.value]
    tile_size = solar_zenith_dataset.chunks
    filter_opts["chunks"] = tile_size
    kwargs = compression.config(**filter_opts).dataset_compression_kwargs()
    no_data = numpy.nan
    kwargs["shape"] = shape
    kwargs["fillvalue"] = no_data
    kwargs["dtype"] = "float32"

    # output datasets
    dataset_name = DatasetName.INCIDENT.value
    incident_dset = grp.create_dataset(dataset_name, **kwargs)
    dataset_name = DatasetName.AZIMUTHAL_INCIDENT.value
    azi_inc_dset = grp.create_dataset(dataset_name, **kwargs)

    # attach some attributes to the image datasets
    attrs = {
        "crs_wkt": crs,
        "geotransform": geobox.transform.to_gdal(),
        "no_data_value": no_data,
    }
    desc = "Contains the incident angles in degrees."
    attrs["description"] = desc
    attrs["alias"] = "incident"
    attach_image_attributes(incident_dset, attrs)

    desc = "Contains the azimuthal incident angles in degrees."
    attrs["description"] = desc
    attrs["alias"] = "azimuthal-incident"
    attach_image_attributes(azi_inc_dset, attrs)

    # process by tile
    for tile in generate_tiles(cols, rows, tile_size[1], tile_size[0]):
        # Row and column start and end locations
        ystart = tile[0][0]
        xstart = tile[1][0]
        yend = tile[0][1]
        xend = tile[1][1]
        idx = (slice(ystart, yend), slice(xstart, xend))

        # Tile size
        ysize = yend - ystart
        xsize = xend - xstart

        # Read the data for the current tile
        # Convert to required datatype and transpose
        sol_zen = as_array(solar_zenith_dataset[idx],
                           dtype=numpy.float32,
                           transpose=True)
        sol_azi = as_array(solar_azimuth_dataset[idx],
                           dtype=numpy.float32,
                           transpose=True)
        slope = as_array(slope_dataset[idx],
                         dtype=numpy.float32,
                         transpose=True)
        aspect = as_array(aspect_dataset[idx],
                          dtype=numpy.float32,
                          transpose=True)

        # Initialise the work arrays
        incident = numpy.zeros((ysize, xsize), dtype="float32")
        azi_incident = numpy.zeros((ysize, xsize), dtype="float32")

        # Process the current tile
        incident_angle(
            xsize,
            ysize,
            sol_zen,
            sol_azi,
            slope,
            aspect,
            incident.transpose(),
            azi_incident.transpose(),
        )

        # Write the current tile to disk
        incident_dset[idx] = incident
        azi_inc_dset[idx] = azi_incident

    if out_group is None:
        return fid
def exiting_angles(satellite_solar_group,
                   slope_aspect_group,
                   out_group=None,
                   compression=H5CompressionFilter.LZF,
                   filter_opts=None):
    """
    Calculates the exiting angle and the azimuthal exiting angle.

    :param satellite_solar_group:
        The root HDF5 `Group` that contains the satellite view and
        satellite azimuth datasets specified by the pathnames given by:

        * DatasetName.SATELLITE_VIEW
        * DatasetName.SATELLITE_AZIMUTH
        
    :param slope_aspect_group:
        The root HDF5 `Group` that contains the slope and aspect
        datasets specified by the pathnames given by:

        * DatasetName.SLOPE
        * DatasetName.ASPECT

    :param out_group:
        If set to None (default) then the results will be returned
        as an in-memory hdf5 file, i.e. the `core` driver. Otherwise,
        a writeable HDF5 `Group` object.

        The dataset names will be as follows:

        * DatasetName.EXITING
        * DatasetName.AZIMUTHAL_EXITING

    :param compression:
        The compression filter to use.
        Default is H5CompressionFilter.LZF 

    :filter_opts:
        A dict of key value pairs available to the given configuration
        instance of H5CompressionFilter. For example
        H5CompressionFilter.LZF has the keywords *chunks* and *shuffle*
        available.
        Default is None, which will use the default settings for the
        chosen H5CompressionFilter instance.

    :return:
        An opened `h5py.File` object, that is either in-memory using the
        `core` driver, or on disk.
    """
    # dataset arrays
    dname = DatasetName.SATELLITE_VIEW.value
    satellite_view_dataset = satellite_solar_group[dname]
    dname = DatasetName.SATELLITE_AZIMUTH.value
    satellite_azimuth_dataset = satellite_solar_group[dname]
    slope_dataset = slope_aspect_group[DatasetName.SLOPE.value]
    aspect_dataset = slope_aspect_group[DatasetName.ASPECT.value]

    geobox = GriddedGeoBox.from_dataset(satellite_view_dataset)
    shape = geobox.get_shape_yx()
    rows, cols = shape
    crs = geobox.crs.ExportToWkt()

    # Initialise the output files
    if out_group is None:
        fid = h5py.File('exiting-angles.h5',
                        driver='core',
                        backing_store=False)
    else:
        fid = out_group

    if GroupName.EXITING_GROUP.value not in fid:
        fid.create_group(GroupName.EXITING_GROUP.value)

    if filter_opts is None:
        filter_opts = {}

    grp = fid[GroupName.EXITING_GROUP.value]
    tile_size = satellite_view_dataset.chunks
    filter_opts['chunks'] = tile_size
    kwargs = compression.config(**filter_opts).dataset_compression_kwargs()
    no_data = -999
    kwargs['shape'] = shape
    kwargs['fillvalue'] = no_data
    kwargs['dtype'] = 'float32'

    # output datasets
    dataset_name = DatasetName.EXITING.value
    exiting_dset = grp.create_dataset(dataset_name, **kwargs)
    dataset_name = DatasetName.AZIMUTHAL_EXITING.value
    azi_exit_dset = grp.create_dataset(dataset_name, **kwargs)

    # attach some attributes to the image datasets
    attrs = {
        'crs_wkt': crs,
        'geotransform': geobox.transform.to_gdal(),
        'no_data_value': no_data
    }
    desc = "Contains the exiting angles in degrees."
    attrs['description'] = desc
    attrs['alias'] = 'exiting'
    attach_image_attributes(exiting_dset, attrs)

    desc = "Contains the azimuthal exiting angles in degrees."
    attrs['description'] = desc
    attrs['alias'] = 'azimuthal-exiting'
    attach_image_attributes(azi_exit_dset, attrs)

    # process by tile
    for tile in generate_tiles(cols, rows, tile_size[1], tile_size[0]):
        # Row and column start and end locations
        ystart = tile[0][0]
        xstart = tile[1][0]
        yend = tile[0][1]
        xend = tile[1][1]
        idx = (slice(ystart, yend), slice(xstart, xend))

        # Tile size
        ysize = yend - ystart
        xsize = xend - xstart

        # Read the data for the current tile
        # Convert to required datatype and transpose
        sat_view = as_array(satellite_view_dataset[idx],
                            dtype=numpy.float32,
                            transpose=True)
        sat_azi = as_array(satellite_azimuth_dataset[idx],
                           dtype=numpy.float32,
                           transpose=True)
        slope = as_array(slope_dataset[idx],
                         dtype=numpy.float32,
                         transpose=True)
        aspect = as_array(aspect_dataset[idx],
                          dtype=numpy.float32,
                          transpose=True)

        # Initialise the work arrays
        exiting = numpy.zeros((ysize, xsize), dtype='float32')
        azi_exiting = numpy.zeros((ysize, xsize), dtype='float32')

        # Process the current tile
        exiting_angle(xsize, ysize, sat_view, sat_azi, slope, aspect,
                      exiting.transpose(), azi_exiting.transpose())

        # Write the current to disk
        exiting_dset[idx] = exiting
        azi_exit_dset[idx] = azi_exiting

    if out_group is None:
        return fid