def plot_wavelet(self):
     d_obs = self.d_obs
     d_mod = self.d_mod
     d_t_obs = self.d_t_obs
     """ plot data wavelet """
     scores = []
     for j, site in enumerate(self.sitename):
         print('Process on Wavelet_' + ''.join(site) + '_No.' + str(j) +
               '!')
         fig3 = plt.figure(figsize=(8, 8))
         # ax3 = fig6.add_subplot(1, 2, 1)
         # fig3, ax3 = plt.subplots()
         data = d_obs[j, :].compressed()
         time_data = d_t_obs[~d_obs[j, :].mask]
         # time_data = d_t_obs
         result = waipy.cwt(data,
                            1,
                            1,
                            0.125,
                            2,
                            4 / 0.125,
                            0.72,
                            6,
                            mother='Morlet',
                            name='Data')
         waipy.wavelet_plot('Data', time_data, data, 0.03125, result, fig3)
         fig3.savefig(self.filedir + self.variable + '/' + ''.join(site) +
                      '_Wavelet_' + self.variable + '.png')
         for m in range(len(d_mod)):
             fig4 = plt.figure(figsize=(8, 8))
             data = d_mod[m][j, :][~d_obs[j, :].mask] - d_obs[
                 j, :].compressed()
             # time_data = d_mod[m][j, :]
             result = waipy.cwt(data,
                                1,
                                1,
                                0.125,
                                2,
                                4 / 0.125,
                                0.72,
                                6,
                                mother='Morlet',
                                name='Data')
             waipy.wavelet_plot('Data', time_data, data, 0.03125, result,
                                fig4)
             fig4.savefig(self.filedir + self.variable + '/' +
                          ''.join(site) + 'model' + str(m) + '_wavelet_' +
                          self.variable + '.png')
         plt.close('all')
     return scores
def main():
    '''
	d = np.genfromtxt(INFILE).T
	time, data = d
	'''

    fs, data = wavfile.read(INFILE)
    plt.plot(data)
    # plt.show()

    data = data[10000:11000]
    # data = scipy.signal.resample(data, len(data)//4)
    # time = np.arange(0, len(data), 1./fs)
    time = np.arange(len(data))

    data = waipy.normalize(data)
    result = waipy.cwt(data,
                       1,
                       1,
                       0.25,
                       2,
                       4 / 0.25,
                       alpha,
                       6,
                       mother='Morlet')
    waipy.wavelet_plot()

    wavelet(time, data, True)
    raw_input('')
def main():
    n_samples = 1024
    # Ruido vermelho
    S3 = powernoise(2, n_samples)

    # Caos, usado para gerar o sinal S7
    rho = 3.85
    a0 = 0.001
    S4 = logistic(rho, a0, n_samples)

    # Soma os sinais e normalizae modo que <A>=0 e std=1
    S7 = pre.standardize(S3 + S4)

    # Sinal gerado pelo pmodel
    S8 = pmodel(noValues=n_samples, p=0.52, slope=-1.66)

    data = S8

    z = np.linspace(0, 1024, 1024)

    data_norm = waipy.normalize(data)
    result = waipy.cwt(data_norm,
                       1,
                       1,
                       0.125,
                       2,
                       4 / 0.125,
                       0.72,
                       6,
                       mother='h',
                       name='S8')
    waipy.wavelet_plot('S8', z, data_norm, 0.03125, result)
Exemple #4
0
def Plot_Wavelet(obs, mod, site_id):
    print('Process on Wavelet ' + 'No.' + str(site_id) + '!')
    time_data = mod.time
    data = (obs.extractDatasites(lat=obs.lat, lon=obs.lat)).data[:, site_id]
    y = (mod.extractDatasites(lat=obs.lat, lon=obs.lat)).data[:, site_id]
    fig3 = plt.figure(figsize=(8, 8))
    result = waipy.cwt(data,
                       1,
                       1,
                       0.125,
                       2,
                       4 / 0.125,
                       0.72,
                       6,
                       mother='Morlet',
                       name='Obs')
    ax1, ax2, ax3, ax5 = waipy.wavelet_plot('Obs',
                                            time_data,
                                            data,
                                            0.03125,
                                            result,
                                            fig3,
                                            unit=obs.unit)

    change_x_tick(mod, site_id, ax2)
 def plot_spectrum_score(self):
     import waipy, math
     import numpy as np
     import matplotlib.pyplot as plt
     d_obs = self.d_obs
     d_mod = self.d_mod
     d_t_obs = self.d_t_obs
     scores = []
     """ Plot global wavelet spectrum """
     for j, site in enumerate(self.sitename):
         if self.sitename.mask[j]:
             continue
         print('Process on Spectrum_' + site + '_No.' + str(j) + '!')
         data = d_obs[j, :].compressed()
         result = waipy.cwt(data,
                            1,
                            1,
                            0.125,
                            2,
                            4 / 0.125,
                            0.72,
                            6,
                            mother='Morlet',
                            name='Data')
         loc_o, scale_o = norm.fit(result['global_ws'])
         model_score = []
         for m in range(len(d_mod)):
             data = d_mod[m][j, :][~d_obs[j, :].mask]
             result_temp = waipy.cwt(data,
                                     1,
                                     1,
                                     0.125,
                                     2,
                                     4 / 0.125,
                                     0.72,
                                     6,
                                     mother='Morlet',
                                     name='Data')
             loc_m, scale_m = norm.fit(result_temp['global_ws'])
             model_score.append(abs(loc_m - loc_o))
         model_score = model_score / max(model_score)
         scores.append(model_score)
     return scores
Exemple #6
0
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
import waipy

datasets = (['data1.dat', 'SAR', 1800], ['data2.dat', 'BIK',
                                         1864], ['data3.dat', 'VUS', 1609])

dt = 1
units = 'mm'
for d, name, t0 in datasets:
    data = np.loadtxt(d)
    N = data.size
    time = np.arange(0, N) * dt + t0
    label = 'Precipitation data {}'.format(name)
    data_norm = waipy.normalize(data)
    alpha = abs(np.corrcoef(data_norm[0:-1], data_norm[1:])[0, 1])
    result = waipy.cwt(data_norm,
                       1,
                       1,
                       0.25,
                       2,
                       7 / 0.25,
                       alpha,
                       6,
                       mother='Morlet',
                       name=name)
    waipy.wavelet_plot(label, time, data_norm, 1.0e-6, result)
    def plot_spectrum(self):
        import waipy, math
        import numpy as np
        import matplotlib.pyplot as plt
        d_obs = self.d_obs
        d_mod = self.d_mod
        d_t_obs = self.d_t_obs
        scores = []
        """ Plot global wavelet spectrum """
        # col = ['palevioletred', 'm', 'plum', 'darkorchid', 'blue', 'navy', 'deepskyblue', 'darkcyan', 'seagreen',
        #        'darkgreen', 'olivedrab', 'gold', 'tan', 'red']
        for j, site in enumerate(self.sitename):
            if self.sitename.mask[j]:
                continue
            print('Process on Spectrum_' + site + '_No.' + str(j) + '!')
            data = d_obs[j, :].compressed()
            if len(data) > 0:
                result = waipy.cwt(data,
                                   1,
                                   1,
                                   0.125,
                                   2,
                                   4 / 0.125,
                                   0.72,
                                   6,
                                   mother='Morlet',
                                   name='Data')
                loc_o, scale_o = norm.fit(result['global_ws'])
                fig4 = plt.figure(figsize=(4, 4))
                ax4 = fig4.add_subplot(1, 1, 1)
                # f1, sxx1 = waipy.fft(data)
                # ax.plot(np.log2(1 / f1 * result['dt']), sxx1, 'red', label='Fourier spectrum')
                # plt.suptitle(self.variable + ' ( ' + self.d_unit_obs + ' )', fontsize=8)
                ax4.plot(np.log2(result['period']),
                         result['global_ws'],
                         'k-',
                         label='Wavelet spectrum')
                ax4.plot(np.log2(result['period']),
                         result['global_signif'],
                         'r--',
                         label='95% confidence spectrum')
            model_score = []

            for m in range(len(d_mod)):
                data2 = d_mod[m][j, :][~d_obs[j, :].mask]
                data = data2.compressed()
                # data = d_mod[m][j, :][~d_obs[j, :].mask]
                if len(data) > 0:
                    result_temp = waipy.cwt(data,
                                            1,
                                            1,
                                            0.125,
                                            2,
                                            4 / 0.125,
                                            0.72,
                                            6,
                                            mother='Morlet',
                                            name='Data')
                    loc_m, scale_m = norm.fit(result_temp['global_ws'])
                    model_score.append(abs(loc_m - loc_o))
                    ax4.plot(np.log2(result_temp['period']),
                             result_temp['global_ws'],
                             label='Model' + str(m),
                             c=col[m])
                else:
                    model_score.append(0.5)
            model_score = [i / max(model_score) for i in model_score]
            scores.append(model_score)

            ax4.legend(bbox_to_anchor=(1.05, 1),
                       loc=2,
                       fontsize=lengendfontsize)
            # ax4.set_ylim(0, 1.25 * np.max(result['global_ws']))
            ax4.set_ylabel('Power', fontsize=fontsize)
            ax4.set_title('Global Wavelet Spectrum', fontsize=fontsize)
            y_min = int(
                min(np.log2(result['period'][0]),
                    np.log2(result_temp['period'][0])))
            y_max = int(
                max(
                    np.log2(result['period'][-1]) + 1,
                    np.log2(result_temp['period'][-1]) + 1))
            yt = range(y_min, y_max, 3)  # create the vector of period
            Yticks = [float(math.pow(2, p)) for p in yt]  # make 2^periods
            ax4.set_xticks(yt)
            ax4.set_xticklabels(Yticks)
            ax4.set_xlim(xmin=(np.log2(np.min(result['period']))),
                         xmax=(np.log2(np.max(result['period']))))
            plt.tight_layout()
            fig4.savefig(self.filedir + self.variable + '/' + site +
                         '_spectrum_' + self.variable + '.png',
                         bbox_inches='tight')
            plt.close('all')
        return scores
 def plot_wavelet(self):
     d_obs = self.d_obs
     d_mod = self.d_mod
     d_t_obs = self.d_t_obs
     """ plot data wavelet """
     scores = []
     for j, site in enumerate(self.sitename):
         if self.sitename.mask[j]:
             continue
         print('Process on Wavelet_' + site + '_No.' + str(j) + '!')
         data = d_obs[j, :].compressed()
         fig3 = plt.figure(figsize=(8, 8))
         if len(data) > 0:
             time_data = d_t_obs[~d_obs[j, :].mask]
             # time_data = d_t_obs
             result = waipy.cwt(data,
                                1,
                                1,
                                0.125,
                                2,
                                4 / 0.125,
                                0.72,
                                6,
                                mother='Morlet',
                                name='Obs')
             waipy.wavelet_plot('Obs',
                                time_data,
                                data,
                                0.03125,
                                result,
                                fig3,
                                unit=self.d_unit_obs)
             # plt.tight_layout()
         for m in range(len(d_mod)):
             fig4 = plt.figure(figsize=(8, 8))
             data2 = d_mod[m][j, :][~d_obs[j, :].mask]
             data = data2.compressed() - d_obs[
                 j, :].compressed()[~data2.mask]
             if len(data) > 0:
                 result = waipy.cwt(data,
                                    1,
                                    1,
                                    0.125,
                                    2,
                                    4 / 0.125,
                                    0.72,
                                    6,
                                    mother='Morlet',
                                    name='Obs - Mod' + str(m + 1))
                 waipy.wavelet_plot('Obs - Mod' + str(m + 1),
                                    time_data[~data2.mask],
                                    data,
                                    0.03125,
                                    result,
                                    fig4,
                                    unit=self.d_unit_obs,
                                    m=m)
                 # plt.tight_layout()
             fig4.savefig(self.filedir + self.variable + '/' + site +
                          'model' + str(m) + '_wavelet_' + self.variable +
                          '.png',
                          bbox_inches='tight')
         fig3.savefig(self.filedir + self.variable + '/' + site +
                      '_Wavelet_' + self.variable + '.png',
                      bbox_inches='tight')
         plt.close('all')
     return scores
    def plot_spectrum(self):
        import waipy, math
        import numpy as np
        import matplotlib.pyplot as plt
        d_obs = self.d_obs
        d_mod = self.d_mod
        d_t_obs = self.d_t_obs
        scores = []
        """ Plot global wavelet spectrum """
        for j, site in enumerate(self.sitename):
            print('Process on Spectrum_' + ''.join(site) + '_No.' + str(j) +
                  '!')
            data = d_obs[j, :].compressed()
            result = waipy.cwt(data,
                               1,
                               1,
                               0.125,
                               2,
                               4 / 0.125,
                               0.72,
                               6,
                               mother='Morlet',
                               name='Data')
            fig4 = plt.figure(figsize=(8, 8))
            ax4 = fig4.add_subplot(1, 1, 1)
            # f1, sxx1 = waipy.fft(data)
            # ax.plot(np.log2(1 / f1 * result['dt']), sxx1, 'red', label='Fourier spectrum')
            # plt.suptitle(self.variable + ' ( ' + self.d_unit_obs + ' )', fontsize=8)
            ax4.plot(np.log2(result['period']),
                     result['global_ws'],
                     'k-',
                     label='Wavelet spectrum')
            ax4.plot(np.log2(result['period']),
                     result['global_signif'],
                     'r--',
                     label='95% confidence spectrum')

            for m in range(len(d_mod)):
                data = d_mod[m][j, :][~d_obs[j, :].mask]
                result_temp = waipy.cwt(data,
                                        1,
                                        1,
                                        0.125,
                                        2,
                                        4 / 0.125,
                                        0.72,
                                        6,
                                        mother='Morlet',
                                        name='Data')
                ax4.plot(np.log2(result_temp['period']),
                         result_temp['global_ws'],
                         label='Model' + str(m))

            ax4.legend(loc=0)
            ax4.set_ylim(0, 1.25 * np.max(result['global_ws']))
            ax4.set_ylabel('Power', fontsize=12)
            ax4.set_title('Global Wavelet Spectrum', fontsize=12)
            yt = range(int(np.log2(result['period'][0])),
                       int(np.log2(result['period'][-1]) +
                           1))  # create the vector of periods
            Yticks = [float(math.pow(2, p)) for p in yt]  # make 2^periods
            ax4.set_xticks(yt)
            ax4.set_xticklabels(Yticks)
            ax4.set_xlim(xmin=(np.log2(np.min(result['period']))),
                         xmax=(np.log2(np.max(result['period']))))
            plt.tight_layout()
            fig4.savefig(self.filedir + self.variable + '/' + ''.join(site) +
                         '_spectrum_' + self.variable + '.png')
            plt.close('all')
        return scores
Exemple #10
0
import waipy
import numpy as np


z = np.linspace(0,2048,2048)
x = np.sin(50*np.pi*z)
y = np.cos(50*np.pi*z)

data_norm = waipy.normalize(x)
result = waipy.cwt(data_norm, 1, 1, 0.125, 2, 4/0.125, 0.72, 6, 
                   mother='Morlet',name='x')
waipy.wavelet_plot('Sine', z, data_norm, 0.03125, result)

data_norm1 = waipy.normalize(y)
result1 = waipy.cwt(data_norm1, 1, 1, 0.125, 2, 4/0.125, 0.72, 6, 
                    mother='Morlet',name='y')
waipy.wavelet_plot('Cosine', z, data_norm1, 0.03125, result1)

cross_power, coherence, phase_angle = waipy.cross_wavelet(result['wave'], 
                                                          result1['wave'])
waipy.plot_cross('Crosspower sine and cosine', cross_power, phase_angle, 
                 z, result, result1)
Exemple #11
0
##############################################################################
################################### MAIN #####################################
##############################################################################

namefile = "daily-cases-covid-19.csv"
l = pd.read_csv(namefile)
codes = list(set(l["Entity"]))
codes = codes[1:]
l = l.set_index("Entity")
values = []
countries = ["Brazil", "India", "Iran", "South Africa", "Egypt"]
for i in codes:
    y = list(l.filter(like=i, axis=0)["Daily confirmed cases (cases)"])
    if i in countries:
        result = waipy.cwt(y, 1, 1, 0.125, 2, 4 / 0.125, 0.72, 6, 'DOG', "x")
        waipy.wavelet_plot(i, range(len(y)), y, 0.03125, result, savefig=True)
    if len(y) > 50:
        alfa, xdfa, ydfa, reta = funcs.dfa1d(y, 1)
        freqs, power, xdata, ydata, amp, index, powerlaw, INICIO, FIM = funcs.psd(
            y)
        values.append([
            funcs.variance(y),
            funcs.skewness(y),
            funcs.kurtosis(y), alfa, index,
            mfdfa.makemfdfa(y), i
        ])

skew2 = []
alfa = []
kurt = []
Exemple #12
0
from waipy import wavelet_plot

tick_spacing = 4

data = np.genfromtxt("data/batch_4.txt", delimiter=",")[20000:30000]
time = (data[:, 0])#/1000

x = 9.8*(data[:, 1])/2048
y = 9.8*(data[:, 2])/2048
z = 9.8*((data[:, 3]))/2048 # -- factory offset of this particular accelerometer!

var = z
dt = 5

data_norm = waipy.normalize(var)
alpha = np.corrcoef(data_norm[0:-1], data_norm[1:])[0,1]; 
result = waipy.cwt(data_norm, dt, 0, 0.0625, 1, 36, alpha, 6, mother='Morlet', name="name")
waipy.wavelet_plot("img/batch_4_z_start_osc", time, data_norm, 0.03125, result); 


"""
    CONTINUOUS WAVELET TRANSFORM
    pad = 1         # pad the time series with zeroes (recommended)
    dj = 0.25       # this will do 4 sub-octaves per octave
    s0 = 2*dt       # this says start at a scale of 6 months
    j1 = 7/dj       # this says do 7 powers-of-two with dj sub-octaves each
    lag1 = 0.72     # lag-1 autocorrelation for red noise background
    param = 6
    mother = 'Morlet'
"""