def main(_): from vqa_eval import evaluate_model, write_result_log from watch_model import ModelWatcher def test_model(model_path): with tf.Graph().as_default(): acc = test_once(model_path) return acc mode = 'ap_' if FLAGS.retrain else '' ckpt_dir = FLAGS.checkpoint_dir % (mode, FLAGS.version, FLAGS.model_type) if FLAGS.sample_negative: ckpt_dir += '_sn' if FLAGS.use_fb_data: ckpt_dir += '_fb' if FLAGS.use_fb_bn: ckpt_dir += '_bn' print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from vqa_eval import evaluate_model, write_result_log from watch_model import ModelWatcher def test_model(model_path): with tf.Graph().as_default(): res_file, quest_ids = test(model_path) print(res_file) acc, details = evaluate_model(res_file, quest_ids, version=FLAGS.version) write_result_log(model_path, FLAGS.model_type, acc, details) return acc ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) if FLAGS.sample_negative: ckpt_dir += '_sn' if FLAGS.use_fb_data: ckpt_dir += '_fb' if FLAGS.use_fb_bn: ckpt_dir += '_bn' print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher subset = 'kptest' # subset = 'kptrain' target_split = 'train' if 'train' in subset else 'val' def test_model(model_path): with tf.Graph().as_default(): res_file = ivqa_decoding_beam_search(checkpoint_path=model_path, subset=subset) if FLAGS.mode == 'full': cider = evaluate_oracle(res_file, split=target_split) else: cider = evaluate_question_standard(res_file) return float(cider[1]) # ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) # ckpt_dir = '/import/vision-ephemeral/fl302/models/v2_kpvaq_VAQ-RL_ft/' # res_file = ivqa_decoding_beam_search(None, # subset=subset) # print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher def test_model(model_path): with tf.Graph().as_default(): ap = test(model_path) return ap ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher def test_model(model_path): with tf.Graph().as_default(): ap = test(model_path) return ap # ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) ckpt_dir = '/data1/fl302/projects/vqa2.0/model/curr_VQA-Soft-QRD-LS_Res5c' print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher subset = 'kpval' def test_model(model_path): with tf.Graph().as_default(): res_file = vaq_decoding_greedy(subset=subset) cider = evaluate_question(res_file, subset=subset) return cider ckpt_dir = FLAGS.checkpoint_dir % FLAGS.model_type print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher subset = 'kpval' def test_model(model_path): with tf.Graph().as_default(): res_file = ivqa_decoding_beam_search(subset=subset) cider = evaluate_question(res_file, subset=subset, version=FLAGS.test_version) return cider ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(): from vqa_eval import evaluate_model, write_result_log from watch_model import ModelWatcher def test_model(model_path): with tf.Graph().as_default(): res_file, quest_ids = test(model_path) print(res_file) acc, details = evaluate_model(res_file, quest_ids, version='v1') write_result_log(model_path, 'Fusion', acc, details) return acc ckpt_dir = FLAGS.checkpoint_dir % ('v1', 'Fusion') # print(ckpt_dir) # test_model(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher subset = 'kpval' def test_model(model_path): with tf.Graph().as_default(): res_file = ivqa_decoding_beam_search(checkpoint_path=model_path, subset=subset) cider = evaluate_question(res_file, subset=subset, version=FLAGS.test_version) return cider # ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) ckpt_dir = '/import/vision-ephemeral/fl302/models/v2_kpvaq_VAQ-Mixer_ft' print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from watch_model import ModelWatcher subset = FLAGS.subset def test_model(model_path): with tf.Graph().as_default(): res_file = ivqa_decoding_beam_search(checkpoint_path=model_path, subset=subset) cider = evaluate_oracle(res_file) return cider ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.version, FLAGS.model_type) # ckpt_dir = '/import/vision-ephemeral/fl302/models/v2_kpvaq_VAQ-RL_ft/' # res_file = ivqa_decoding_beam_search(None, # subset=subset) # print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()
def main(_): from vqa_eval import evaluate_model, write_result_log from watch_model import ModelWatcher def test_model(model_path): with tf.Graph().as_default(): res_file, quest_ids = test() print(res_file) acc, details = evaluate_model(res_file, quest_ids, version=FLAGS.version) write_result_log(model_path, FLAGS.model_type, acc, details) return acc ckpt_dir = FLAGS.checkpoint_dir % (FLAGS.model_trainset, FLAGS.model_type) print(ckpt_dir) watcher = ModelWatcher(ckpt_dir, test_model) watcher.run()