Exemple #1
0
def test_config():
    m = ConcreteModel()
    m.fs = FlowsheetBlock(default={"dynamic": False})
    m.fs.properties = props.NaClParameterBlock()
    m.fs.unit = ReverseOsmosis0D(default={"property_package": m.fs.properties})

    assert len(m.fs.unit.config) == 12

    assert not m.fs.unit.config.dynamic
    assert not m.fs.unit.config.has_holdup
    assert m.fs.unit.config.material_balance_type == \
           MaterialBalanceType.useDefault
    assert m.fs.unit.config.energy_balance_type == \
           EnergyBalanceType.useDefault
    assert m.fs.unit.config.momentum_balance_type == \
           MomentumBalanceType.pressureTotal
    assert not m.fs.unit.config.has_pressure_change
    assert m.fs.unit.config.property_package is \
           m.fs.properties
    assert m.fs.unit.config.concentration_polarization_type == \
           ConcentrationPolarizationType.calculated
    assert m.fs.unit.config.mass_transfer_coefficient == \
           MassTransferCoefficient.calculated
    assert m.fs.unit.config.pressure_change_type == \
           PressureChangeType.fixed_per_stage
Exemple #2
0
def test_option_pressure_change_calculated():
    m = ConcreteModel()
    m.fs = FlowsheetBlock(default={"dynamic": False})
    m.fs.properties = props.NaClParameterBlock()
    m.fs.unit = ReverseOsmosis0D(default={
        "property_package": m.fs.properties,
        "has_pressure_change": True,
        "concentration_polarization_type": ConcentrationPolarizationType.none,
        "mass_transfer_coefficient": MassTransferCoefficient.none,
        "pressure_change_type": PressureChangeType.calculated})

    assert m.fs.unit.config.concentration_polarization_type == \
           ConcentrationPolarizationType.none
    assert m.fs.unit.config.mass_transfer_coefficient == \
           MassTransferCoefficient.none
    assert m.fs.unit.config.pressure_change_type == \
           PressureChangeType.calculated
    assert isinstance(m.fs.unit.feed_side.deltaP, Var)
    assert isinstance(m.fs.unit.deltaP, Var)
    assert isinstance(m.fs.unit.channel_height, Var)
    assert isinstance(m.fs.unit.width, Var)
    assert isinstance(m.fs.unit.length, Var)
    assert isinstance(m.fs.unit.dh, Var)
    assert isinstance(m.fs.unit.spacer_porosity, Var)
    assert isinstance(m.fs.unit.N_Re, Var)
Exemple #3
0
def test_option_has_pressure_change():
    m = ConcreteModel()
    m.fs = FlowsheetBlock(default={"dynamic": False})
    m.fs.properties = props.NaClParameterBlock()
    m.fs.unit = ReverseOsmosis0D(default={
        "property_package": m.fs.properties,
        "has_pressure_change": True})

    assert isinstance(m.fs.unit.feed_side.deltaP, Var)
    assert isinstance(m.fs.unit.deltaP, Var)
Exemple #4
0
def test_option_concentration_polarization_type_fixed():
    m = ConcreteModel()
    m.fs = FlowsheetBlock(default={"dynamic": False})
    m.fs.properties = props.NaClParameterBlock()
    m.fs.unit = ReverseOsmosis0D(default={
        "property_package": m.fs.properties,
        "has_pressure_change": True,
        "concentration_polarization_type": ConcentrationPolarizationType.fixed,
        "mass_transfer_coefficient": MassTransferCoefficient.none})

    assert m.fs.unit.config.concentration_polarization_type == \
           ConcentrationPolarizationType.fixed
    assert isinstance(m.fs.unit.cp_modulus, Var)
    def RO_frame(self):
        m = ConcreteModel()
        m.fs = FlowsheetBlock(default={"dynamic": False})

        m.fs.properties = props.NaClParameterBlock()

        m.fs.unit = ReverseOsmosis0D(
            default={
                "property_package": m.fs.properties,
                "has_pressure_change": True,
                "concentration_polarization_type":
                ConcentrationPolarizationType.fixed,
                "mass_transfer_coefficient": MassTransferCoefficient.none,
            })

        # fully specify system
        feed_flow_mass = 1
        feed_mass_frac_NaCl = 0.035
        feed_pressure = 50e5
        feed_temperature = 273.15 + 25
        membrane_pressure_drop = 3e5
        membrane_area = 50
        A = 4.2e-12
        B = 3.5e-8
        pressure_atmospheric = 101325
        concentration_polarization_modulus = 1.1

        feed_mass_frac_H2O = 1 - feed_mass_frac_NaCl
        m.fs.unit.inlet.flow_mass_phase_comp[0, "Liq", "NaCl"].fix(
            feed_flow_mass * feed_mass_frac_NaCl)
        m.fs.unit.inlet.flow_mass_phase_comp[0, "Liq", "H2O"].fix(
            feed_flow_mass * feed_mass_frac_H2O)
        m.fs.unit.inlet.pressure[0].fix(feed_pressure)
        m.fs.unit.inlet.temperature[0].fix(feed_temperature)
        m.fs.unit.deltaP.fix(-membrane_pressure_drop)
        m.fs.unit.area.fix(membrane_area)
        m.fs.unit.A_comp.fix(A)
        m.fs.unit.B_comp.fix(B)
        m.fs.unit.permeate.pressure[0].fix(pressure_atmospheric)
        m.fs.unit.cp_modulus.fix(concentration_polarization_modulus)
        return m
Exemple #6
0
    def NF_frame(self):
        m = ConcreteModel()
        m.fs = FlowsheetBlock(default={"dynamic": False})

        m.fs.properties = props.NaClParameterBlock()

        m.fs.unit = NanoFiltration0D(default={
            "property_package": m.fs.properties,
            "has_pressure_change": True,
        })

        # fully specify system
        feed_flow_mass = 1
        feed_mass_frac_NaCl = 0.035
        feed_pressure = 6e5
        feed_temperature = 273.15 + 25
        membrane_pressure_drop = 1e5
        membrane_area = 50 * feed_flow_mass
        A = 3.77e-11
        B = 4.724e-5
        sigma = 0.28
        pressure_atmospheric = 101325

        feed_mass_frac_H2O = 1 - feed_mass_frac_NaCl
        m.fs.unit.inlet.flow_mass_phase_comp[0, "Liq", "NaCl"].fix(
            feed_flow_mass * feed_mass_frac_NaCl)
        m.fs.unit.inlet.flow_mass_phase_comp[0, "Liq", "H2O"].fix(
            feed_flow_mass * feed_mass_frac_H2O)
        m.fs.unit.inlet.pressure[0].fix(feed_pressure)
        m.fs.unit.inlet.temperature[0].fix(feed_temperature)
        m.fs.unit.deltaP.fix(-membrane_pressure_drop)
        m.fs.unit.area.fix(membrane_area)
        m.fs.unit.A_comp.fix(A)
        m.fs.unit.B_comp.fix(B)
        m.fs.unit.sigma.fix(sigma)
        m.fs.unit.permeate.pressure[0].fix(pressure_atmospheric)
        return m
Exemple #7
0
def build(number_of_stages=2):
    # ---building model---
    m = ConcreteModel()

    m.fs = FlowsheetBlock(default={"dynamic": False})
    m.fs.properties = props.NaClParameterBlock()
    m.fs.costing = WaterTAPCosting()

    m.fs.NumberOfStages = Param(initialize=number_of_stages)
    m.fs.StageSet = RangeSet(m.fs.NumberOfStages)
    m.fs.LSRRO_StageSet = RangeSet(2, m.fs.NumberOfStages)
    m.fs.NonFinal_StageSet = RangeSet(m.fs.NumberOfStages-1)

    m.fs.feed = Feed(default={'property_package': m.fs.properties})
    m.fs.product = Product(default={'property_package': m.fs.properties})
    m.fs.disposal = Product(default={'property_package': m.fs.properties})

    # Add the mixers
    m.fs.Mixers = Mixer(m.fs.NonFinal_StageSet, default={
            "property_package": m.fs.properties,
            "momentum_mixing_type": MomentumMixingType.equality,  # booster pump will match pressure
            "inlet_list": ['upstream', 'downstream']})

    total_pump_work = 0
    # Add the pumps
    m.fs.PrimaryPumps = Pump(m.fs.StageSet, default={"property_package": m.fs.properties})
    for pump in m.fs.PrimaryPumps.values():
        pump.costing = UnitModelCostingBlock(default={
                "flowsheet_costing_block":m.fs.costing})
        m.fs.costing.cost_flow(pyunits.convert(pump.work_mechanical[0], to_units=pyunits.kW), "electricity")

    # Add the equalizer pumps
    m.fs.BoosterPumps = Pump(m.fs.LSRRO_StageSet, default={"property_package": m.fs.properties})
    for pump in m.fs.BoosterPumps.values():
        pump.costing = UnitModelCostingBlock(default={
                "flowsheet_costing_block":m.fs.costing})
        m.fs.costing.cost_flow(pyunits.convert(pump.work_mechanical[0], to_units=pyunits.kW), "electricity")

    # Add the stages ROs
    m.fs.ROUnits = ReverseOsmosis0D(m.fs.StageSet, default={
            "property_package": m.fs.properties,
            "has_pressure_change": True,
            "pressure_change_type": PressureChangeType.calculated,
            "mass_transfer_coefficient": MassTransferCoefficient.calculated,
            "concentration_polarization_type": ConcentrationPolarizationType.calculated})
    for ro_unit in m.fs.ROUnits.values():
        ro_unit.costing = UnitModelCostingBlock(default={
                "flowsheet_costing_block":m.fs.costing})

    # Add EnergyRecoveryDevice
    m.fs.EnergyRecoveryDevice = Pump(default={"property_package": m.fs.properties})
    m.fs.EnergyRecoveryDevice.costing = UnitModelCostingBlock(default={
            "flowsheet_costing_block":m.fs.costing,
            "costing_method_arguments":{"pump_type":PumpType.energy_recovery_device}})
    m.fs.costing.cost_flow(pyunits.convert(m.fs.EnergyRecoveryDevice.work_mechanical[0], to_units=pyunits.kW), "electricity")

    # additional variables or expressions
    # system water recovery
    m.fs.water_recovery = Var(
            initialize=0.5,
            bounds=(0, 1),
            domain=NonNegativeReals,
            units=pyunits.dimensionless,
            doc='System Water Recovery')
    m.fs.eq_water_recovery = Constraint(expr=\
              sum(m.fs.feed.flow_mass_phase_comp[0,'Liq',:]) * m.fs.water_recovery == \
              sum(m.fs.product.flow_mass_phase_comp[0,'Liq',:]) )

    # costing
    m.fs.costing.cost_process()
    product_flow_vol_total = m.fs.product.properties[0].flow_vol
    m.fs.costing.add_LCOW(product_flow_vol_total)
    m.fs.costing.add_specific_energy_consumption(product_flow_vol_total)

    # objective
    m.fs.objective = Objective(expr=m.fs.costing.LCOW)

    # connections

    # Connect the feed to the first pump
    m.fs.feed_to_pump = Arc(source=m.fs.feed.outlet, destination=m.fs.PrimaryPumps[1].inlet)

    # Connect the primary RO permeate to the product
    m.fs.primary_RO_to_product = Arc(source=m.fs.ROUnits[1].permeate, destination=m.fs.product.inlet)

    # Connect the Pump n to the Mixer n
    m.fs.pump_to_mixer = Arc(m.fs.NonFinal_StageSet,
            rule=lambda fs,n : {'source':fs.PrimaryPumps[n].outlet,
                                'destination':fs.Mixers[n].upstream})

    # Connect the Mixer n to the Stage n
    m.fs.mixer_to_stage = Arc(m.fs.NonFinal_StageSet,
            rule=lambda fs,n : {'source':fs.Mixers[n].outlet,
                                'destination':fs.ROUnits[n].inlet})

    # Connect the Stage n to the Pump n+1
    m.fs.stage_to_pump = Arc(m.fs.NonFinal_StageSet,
            rule=lambda fs,n : {'source':fs.ROUnits[n].retentate,
                                'destination':fs.PrimaryPumps[n+1].inlet})

    # Connect the Stage n to the Eq Pump n
    m.fs.stage_to_eq_pump = Arc(m.fs.LSRRO_StageSet,
            rule=lambda fs,n : {'source':fs.ROUnits[n].permeate,
                                'destination':fs.BoosterPumps[n].inlet})

    # Connect the Eq Pump n to the Mixer n-1
    m.fs.eq_pump_to_mixer = Arc(m.fs.LSRRO_StageSet,
            rule=lambda fs,n : {'source':fs.BoosterPumps[n].outlet,
                                'destination':fs.Mixers[n-1].downstream})

    # Connect the Pump N to the Stage N
    last_stage = m.fs.StageSet.last()
    m.fs.pump_to_stage = Arc(source=m.fs.PrimaryPumps[last_stage].outlet,
            destination=m.fs.ROUnits[last_stage].inlet)

    # Connect Final Stage to EnergyRecoveryDevice Pump
    m.fs.stage_to_erd = Arc(source=m.fs.ROUnits[last_stage].retentate,
            destination=m.fs.EnergyRecoveryDevice.inlet)

    # Connect the EnergyRecoveryDevice to the disposal
    m.fs.erd_to_disposal = Arc(source=m.fs.EnergyRecoveryDevice.outlet,
            destination=m.fs.disposal.inlet)

    # additional bounding
    for b in m.component_data_objects(Block, descend_into=True):
        # NaCl solubility limit
        if hasattr(b, 'mass_frac_phase_comp'):
            b.mass_frac_phase_comp['Liq', 'NaCl'].setub(0.26)

    TransformationFactory("network.expand_arcs").apply_to(m)

    return m
def build():
    # flowsheet set up
    m = ConcreteModel()
    m.fs = FlowsheetBlock(default={'dynamic': False})
    m.fs.properties = props.NaClParameterBlock()
    m.fs.costing = WaterTAPCosting()

    # unit models
    m.fs.feed = Feed(default={'property_package': m.fs.properties})
    m.fs.S1 = Separator(default={
        "property_package": m.fs.properties,
        "outlet_list": ['P1', 'PXR']
    })
    m.fs.P1 = Pump(default={'property_package': m.fs.properties})
    m.fs.PXR = PressureExchanger(default={'property_package': m.fs.properties})
    m.fs.P2 = Pump(default={'property_package': m.fs.properties})
    m.fs.M1 = Mixer(
        default={
            "property_package": m.fs.properties,
            "momentum_mixing_type":
            MomentumMixingType.equality,  # booster pump will match pressure
            "inlet_list": ['P1', 'P2']
        })
    m.fs.RO = ReverseOsmosis0D(
        default={
            "property_package":
            m.fs.properties,
            "has_pressure_change":
            True,
            "pressure_change_type":
            PressureChangeType.calculated,
            "mass_transfer_coefficient":
            MassTransferCoefficient.calculated,
            "concentration_polarization_type":
            ConcentrationPolarizationType.calculated,
        })
    m.fs.product = Product(default={'property_package': m.fs.properties})
    m.fs.disposal = Product(default={'property_package': m.fs.properties})

    # costing
    m.fs.costing.cost_flow(
        pyunits.convert(m.fs.P1.work_mechanical[0], to_units=pyunits.kW),
        "electricity")
    m.fs.costing.cost_flow(
        pyunits.convert(m.fs.P2.work_mechanical[0], to_units=pyunits.kW),
        "electricity")
    m.fs.P1.costing = UnitModelCostingBlock(
        default={"flowsheet_costing_block": m.fs.costing})
    m.fs.P2.costing = UnitModelCostingBlock(
        default={"flowsheet_costing_block": m.fs.costing})

    m.fs.RO.costing = UnitModelCostingBlock(
        default={"flowsheet_costing_block": m.fs.costing})
    m.fs.PXR.costing = UnitModelCostingBlock(
        default={"flowsheet_costing_block": m.fs.costing})
    m.fs.costing.cost_process()
    m.fs.costing.add_LCOW(m.fs.product.properties[0].flow_vol)
    m.fs.costing.add_specific_energy_consumption(
        m.fs.product.properties[0].flow_vol)

    # connections
    m.fs.s01 = Arc(source=m.fs.feed.outlet, destination=m.fs.S1.inlet)
    m.fs.s02 = Arc(source=m.fs.S1.P1, destination=m.fs.P1.inlet)
    m.fs.s03 = Arc(source=m.fs.P1.outlet, destination=m.fs.M1.P1)
    m.fs.s04 = Arc(source=m.fs.M1.outlet, destination=m.fs.RO.inlet)
    m.fs.s05 = Arc(source=m.fs.RO.permeate, destination=m.fs.product.inlet)
    m.fs.s06 = Arc(source=m.fs.RO.retentate,
                   destination=m.fs.PXR.high_pressure_inlet)
    m.fs.s07 = Arc(source=m.fs.PXR.high_pressure_outlet,
                   destination=m.fs.disposal.inlet)
    m.fs.s08 = Arc(source=m.fs.S1.PXR, destination=m.fs.PXR.low_pressure_inlet)
    m.fs.s09 = Arc(source=m.fs.PXR.low_pressure_outlet,
                   destination=m.fs.P2.inlet)
    m.fs.s10 = Arc(source=m.fs.P2.outlet, destination=m.fs.M1.P2)
    TransformationFactory("network.expand_arcs").apply_to(m)

    # scaling
    # set default property values
    m.fs.properties.set_default_scaling('flow_mass_phase_comp',
                                        1,
                                        index=('Liq', 'H2O'))
    m.fs.properties.set_default_scaling('flow_mass_phase_comp',
                                        1e2,
                                        index=('Liq', 'NaCl'))
    # set unit model values
    iscale.set_scaling_factor(m.fs.P1.control_volume.work, 1e-3)
    iscale.set_scaling_factor(m.fs.P2.control_volume.work, 1e-3)
    iscale.set_scaling_factor(m.fs.PXR.low_pressure_side.work, 1e-3)
    iscale.set_scaling_factor(m.fs.PXR.high_pressure_side.work, 1e-3)
    # touch properties used in specifying and initializing the model
    m.fs.feed.properties[0].flow_vol_phase['Liq']
    m.fs.feed.properties[0].mass_frac_phase_comp['Liq', 'NaCl']
    m.fs.S1.mixed_state[0].mass_frac_phase_comp
    m.fs.S1.PXR_state[0].flow_vol_phase['Liq']
    # unused scaling factors needed by IDAES base costing module
    # calculate and propagate scaling factors
    iscale.calculate_scaling_factors(m)

    return m
Exemple #9
0
    def test_Pdrop_fixed_per_unit_length(self):
        """ Testing 0D-RO with PressureChangeType.fixed_per_unit_length option.
        """
        m = ConcreteModel()
        m.fs = FlowsheetBlock(default={"dynamic": False})

        m.fs.properties = props.NaClParameterBlock()

        m.fs.unit = ReverseOsmosis0D(default={
            "property_package": m.fs.properties,
            "has_pressure_change": True,
            "concentration_polarization_type": ConcentrationPolarizationType.calculated,
            "mass_transfer_coefficient": MassTransferCoefficient.calculated,
            "pressure_change_type": PressureChangeType.fixed_per_unit_length})

        # fully specify system
        feed_flow_mass = 1
        feed_mass_frac_NaCl = 0.035
        feed_mass_frac_H2O = 1 - feed_mass_frac_NaCl
        feed_pressure = 50e5
        feed_temperature = 273.15 + 25
        membrane_area = 50
        length = 20
        A = 4.2e-12
        B = 3.5e-8
        pressure_atmospheric = 101325
        membrane_pressure_drop = 3e5

        m.fs.unit.inlet.flow_mass_phase_comp[0, 'Liq', 'NaCl'].fix(
            feed_flow_mass * feed_mass_frac_NaCl)
        m.fs.unit.inlet.flow_mass_phase_comp[0, 'Liq', 'H2O'].fix(
            feed_flow_mass * feed_mass_frac_H2O)
        m.fs.unit.inlet.pressure[0].fix(feed_pressure)
        m.fs.unit.inlet.temperature[0].fix(feed_temperature)
        m.fs.unit.area.fix(membrane_area)
        m.fs.unit.A_comp.fix(A)
        m.fs.unit.B_comp.fix(B)
        m.fs.unit.permeate.pressure[0].fix(pressure_atmospheric)

        m.fs.unit.channel_height.fix(0.002)
        m.fs.unit.spacer_porosity.fix(0.75)
        m.fs.unit.length.fix(length)
        m.fs.unit.dP_dx.fix(-membrane_pressure_drop / length)

        # test statistics
        assert number_variables(m) == 142
        assert number_total_constraints(m) == 112
        assert number_unused_variables(m) == 0

        # test degrees of freedom
        assert degrees_of_freedom(m) == 0

        # test scaling
        m.fs.properties.set_default_scaling('flow_mass_phase_comp', 1, index=('Liq', 'H2O'))
        m.fs.properties.set_default_scaling('flow_mass_phase_comp', 1e2, index=('Liq', 'NaCl'))

        calculate_scaling_factors(m)

        # check that all variables have scaling factors.
        # TODO: see aforementioned TODO on revisiting scaling and associated testing for property models.
        unscaled_var_list = list(unscaled_variables_generator(m.fs.unit, include_fixed=True))
        assert len(unscaled_var_list) == 0

        # test initialization
        initialization_tester(m, fail_on_warning=True)

        # test variable scaling
        badly_scaled_var_lst = list(badly_scaled_var_generator(m))
        assert badly_scaled_var_lst == []

        # test solve
        results = solver.solve(m, tee=True)

        # Check for optimal solution
        assert_optimal_termination(results)

        # test solution
        assert (pytest.approx(-3.000e5, rel=1e-3) == value(m.fs.unit.deltaP[0]))
        assert (pytest.approx(4.562e-3, rel=1e-3) ==
                value(m.fs.unit.flux_mass_phase_comp_avg[0, 'Liq', 'H2O']))
        assert (pytest.approx(1.593e-6, rel=1e-3) ==
                value(m.fs.unit.flux_mass_phase_comp_avg[0, 'Liq', 'NaCl']))
        assert (pytest.approx(0.2281, rel=1e-3) ==
                value(m.fs.unit.mixed_permeate[0].flow_mass_phase_comp['Liq', 'H2O']))
        assert (pytest.approx(7.963e-5, rel=1e-3) ==
                value(m.fs.unit.mixed_permeate[0].flow_mass_phase_comp['Liq', 'NaCl']))
        assert (pytest.approx(41.96, rel=1e-3) ==
                value(m.fs.unit.feed_side.properties_interface[0,0.].conc_mass_phase_comp['Liq', 'NaCl']))
        assert (pytest.approx(46.57, rel=1e-3) ==
                value(m.fs.unit.feed_side.properties_out[0].conc_mass_phase_comp['Liq', 'NaCl']))
        assert (pytest.approx(49.94, rel=1e-3) ==
                value(m.fs.unit.feed_side.properties_interface[0, 1.].conc_mass_phase_comp['Liq', 'NaCl']))
Exemple #10
0
    def test_CP_calculation_with_kf_fixed(self):
        """ Testing 0D-RO with ConcentrationPolarizationType.calculated option enabled.
        This option makes use of an alternative constraint for the feed-side, membrane-interface concentration.
        Additionally, two more variables are created when this option is enabled: Kf - feed-channel
        mass transfer coefficients at the channel inlet and outlet.
        """
        m = ConcreteModel()
        m.fs = FlowsheetBlock(default={"dynamic": False})

        m.fs.properties = props.NaClParameterBlock()

        m.fs.unit = ReverseOsmosis0D(default={
            "property_package": m.fs.properties,
            "has_pressure_change": True,
            "concentration_polarization_type": ConcentrationPolarizationType.calculated,
            "mass_transfer_coefficient": MassTransferCoefficient.fixed})

        # fully specify system
        feed_flow_mass = 1
        feed_mass_frac_NaCl = 0.035
        feed_pressure = 50e5
        feed_temperature = 273.15 + 25
        membrane_pressure_drop = 3e5
        membrane_area = 50
        A = 4.2e-12
        B = 3.5e-8
        pressure_atmospheric = 101325
        kf = 2e-5

        feed_mass_frac_H2O = 1 - feed_mass_frac_NaCl
        m.fs.unit.inlet.flow_mass_phase_comp[0, 'Liq', 'NaCl'].fix(
            feed_flow_mass * feed_mass_frac_NaCl)
        m.fs.unit.inlet.flow_mass_phase_comp[0, 'Liq', 'H2O'].fix(
            feed_flow_mass * feed_mass_frac_H2O)
        m.fs.unit.inlet.pressure[0].fix(feed_pressure)
        m.fs.unit.inlet.temperature[0].fix(feed_temperature)
        m.fs.unit.deltaP.fix(-membrane_pressure_drop)
        m.fs.unit.area.fix(membrane_area)
        m.fs.unit.A_comp.fix(A)
        m.fs.unit.B_comp.fix(B)
        m.fs.unit.permeate.pressure[0].fix(pressure_atmospheric)
        m.fs.unit.Kf[0, 0., 'NaCl'].fix(kf)
        m.fs.unit.Kf[0, 1., 'NaCl'].fix(kf)

        # test statistics
        assert number_variables(m) == 125
        assert number_total_constraints(m) == 96
        assert number_unused_variables(m) == 7  # vars from property package parameters

        # test degrees of freedom
        assert degrees_of_freedom(m) == 0

        # test scaling
        m.fs.properties.set_default_scaling('flow_mass_phase_comp', 1, index=('Liq', 'H2O'))
        m.fs.properties.set_default_scaling('flow_mass_phase_comp', 1e2, index=('Liq', 'NaCl'))
        calculate_scaling_factors(m)

        # check that all variables have scaling factors.
        # TODO: Setting the "include_fixed" arg as True reveals
        #  unscaled vars that weren't being accounted for previously. However, calling the whole block (i.e.,
        #  m) shows that several NaCl property parameters are unscaled. For now, we are just interested in ensuring
        #  unit variables are scaled (hence, calling m.fs.unit) but might need to revisit scaling and associated
        #  testing for property models.

        unscaled_var_list = list(unscaled_variables_generator(m.fs.unit, include_fixed=True))
        assert len(unscaled_var_list) == 0

        # # test initialization
        initialization_tester(m, fail_on_warning=True)

        # test variable scaling
        badly_scaled_var_lst = list(badly_scaled_var_generator(m))
        assert badly_scaled_var_lst == []

        # test solve
        results = solver.solve(m)

        # Check for optimal solution
        assert_optimal_termination(results)

        # test solution
        assert (pytest.approx(3.815e-3, rel=1e-3) ==
                value(m.fs.unit.flux_mass_phase_comp_avg[0, 'Liq', 'H2O']))
        assert (pytest.approx(1.668e-6, rel=1e-3) ==
                value(m.fs.unit.flux_mass_phase_comp_avg[0, 'Liq', 'NaCl']))
        assert (pytest.approx(0.1908, rel=1e-3) ==
                value(m.fs.unit.mixed_permeate[0].flow_mass_phase_comp['Liq', 'H2O']))
        assert (pytest.approx(8.337e-5, rel=1e-3) ==
                value(m.fs.unit.mixed_permeate[0].flow_mass_phase_comp['Liq', 'NaCl']))
        assert (pytest.approx(46.07, rel=1e-3) ==
                value(m.fs.unit.feed_side.properties_interface[0, 0.].conc_mass_phase_comp['Liq', 'NaCl']))
        assert (pytest.approx(44.34, rel=1e-3) ==
                value(m.fs.unit.feed_side.properties_out[0].conc_mass_phase_comp['Liq', 'NaCl']))
        assert (pytest.approx(50.20, rel=1e-3) ==
                value(m.fs.unit.feed_side.properties_interface[0, 1.].conc_mass_phase_comp['Liq', 'NaCl']))
    def test_Pdrop_calculation(self):
        """Testing 0D-RO with PressureChangeType.calculated option."""
        m = ConcreteModel()
        m.fs = FlowsheetBlock(default={"dynamic": False})

        m.fs.properties = props.NaClParameterBlock()

        m.fs.unit = ReverseOsmosis0D(
            default={
                "property_package": m.fs.properties,
                "has_pressure_change": True,
                "concentration_polarization_type":
                ConcentrationPolarizationType.calculated,
                "mass_transfer_coefficient":
                MassTransferCoefficient.calculated,
                "pressure_change_type": PressureChangeType.calculated,
            })

        # fully specify system
        feed_flow_mass = 1 / 3.6
        feed_mass_frac_NaCl = 0.035
        feed_mass_frac_H2O = 1 - feed_mass_frac_NaCl
        feed_pressure = 70e5
        feed_temperature = 273.15 + 25
        membrane_area = 19
        A = 4.2e-12
        B = 3.5e-8
        pressure_atmospheric = 101325

        m.fs.unit.inlet.flow_mass_phase_comp[0, "Liq", "NaCl"].fix(
            feed_flow_mass * feed_mass_frac_NaCl)
        m.fs.unit.inlet.flow_mass_phase_comp[0, "Liq", "H2O"].fix(
            feed_flow_mass * feed_mass_frac_H2O)
        m.fs.unit.inlet.pressure[0].fix(feed_pressure)
        m.fs.unit.inlet.temperature[0].fix(feed_temperature)
        m.fs.unit.area.fix(membrane_area)
        m.fs.unit.A_comp.fix(A)
        m.fs.unit.B_comp.fix(B)
        m.fs.unit.permeate.pressure[0].fix(pressure_atmospheric)
        m.fs.unit.channel_height.fix(0.001)
        m.fs.unit.spacer_porosity.fix(0.97)
        m.fs.unit.length.fix(16)

        # test statistics
        assert number_variables(m) == 147
        assert number_total_constraints(m) == 118
        assert number_unused_variables(
            m) == 0  # vars from property package parameters

        # test degrees of freedom
        assert degrees_of_freedom(m) == 0

        # test scaling
        m.fs.properties.set_default_scaling("flow_mass_phase_comp",
                                            1,
                                            index=("Liq", "H2O"))
        m.fs.properties.set_default_scaling("flow_mass_phase_comp",
                                            1e2,
                                            index=("Liq", "NaCl"))

        calculate_scaling_factors(m)

        # check that all variables have scaling factors.
        # TODO: see aforementioned TODO on revisiting scaling and associated testing for property models.
        unscaled_var_list = list(
            unscaled_variables_generator(m.fs.unit, include_fixed=True))
        assert len(unscaled_var_list) == 0

        # test initialization
        initialization_tester(m, fail_on_warning=True)

        # test variable scaling
        badly_scaled_var_lst = list(badly_scaled_var_generator(m))
        assert badly_scaled_var_lst == []

        # test solve
        results = solver.solve(m, tee=True)

        # Check for optimal solution
        assert_optimal_termination(results)

        # test solution
        assert pytest.approx(-1.661e5, rel=1e-3) == value(m.fs.unit.deltaP[0])
        assert pytest.approx(-1.038e4, rel=1e-3) == value(m.fs.unit.deltaP[0] /
                                                          m.fs.unit.length)
        assert pytest.approx(395.8, rel=1e-3) == value(m.fs.unit.N_Re[0, 0.0])
        assert pytest.approx(0.2361,
                             rel=1e-3) == value(m.fs.unit.velocity[0, 0.0])
        assert pytest.approx(191.1, rel=1e-3) == value(m.fs.unit.N_Re[0, 1.0])
        assert pytest.approx(0.1187,
                             rel=1e-3) == value(m.fs.unit.velocity[0, 1.0])
        assert pytest.approx(7.089e-3, rel=1e-3) == value(
            m.fs.unit.flux_mass_phase_comp_avg[0, "Liq", "H2O"])
        assert pytest.approx(2.188e-6, rel=1e-3) == value(
            m.fs.unit.flux_mass_phase_comp_avg[0, "Liq", "NaCl"])
        assert pytest.approx(0.1347, rel=1e-3) == value(
            m.fs.unit.mixed_permeate[0].flow_mass_phase_comp["Liq", "H2O"])
        assert pytest.approx(4.157e-5, rel=1e-3) == value(
            m.fs.unit.mixed_permeate[0].flow_mass_phase_comp["Liq", "NaCl"])
        assert pytest.approx(50.08, rel=1e-3) == value(
            m.fs.unit.feed_side.properties_interface[
                0, 0.0].conc_mass_phase_comp["Liq", "NaCl"])
        assert pytest.approx(70.80, rel=1e-3) == value(
            m.fs.unit.feed_side.properties_out[0].conc_mass_phase_comp["Liq",
                                                                       "NaCl"])
        assert pytest.approx(76.32, rel=1e-3) == value(
            m.fs.unit.feed_side.properties_interface[
                0, 1.0].conc_mass_phase_comp["Liq", "NaCl"])