def transcribe_audio(path_to_audio_file): username = os.environ.get("STT_USERNAME") password = os.environ.get("STT_PASSWORD") speech_to_text = SpeechToText(username=username, password=password) with open(join(dirname(__file__), path_to_audio_file), 'rb') as audio_file: return speech_to_text.recognize(audio_file, content_type='audio/wav')
def transcribe_audio(self, path_to_audio_file): #username = os.environ.get("BLUEMIX_USERNAME") #password = os.environ.get("BLUEMIX_PASSWORD") username = "******" password = "******" speech_to_text = SpeechToText(username=username, password=password) with open(path_to_audio_file, 'rb') as audio_file: return speech_to_text.recognize(audio_file, content_type='audio/wav')
def main(): dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) stt = SpeechToText(username=os.environ.get("STT_USERNAME"), password=os.environ.get("STT_PASSWORD")) recorder = Recorder("speech.wav") print("Please say something into the microphone\n") recorder.record_to_file() print("Transcribing audio....\n") result = transcribe_audio(stt, 'speech.wav') text = result['results'][0]['alternatives'][0]['transcript'] print("Text: " + text + "\n")
def speech_to_text(self, wavpath): username = self.speechcreds['username'] password = self.speechcreds['password'] speech_to_text = SpeechToText(username=username, password=password) result = "" fname = wavpath try: with open(fname, 'rb') as audio_file: result = speech_to_text.recognize(audio_file, content_type='audio/wav') text = result['results'][0]['alternatives'][0]['transcript'] return text except: return "Something went wrong. Please try again."
import json from os.path import join, dirname from watson_developer_cloud import SpeechToTextV1 as SpeechToText speech_to_text = SpeechToText(username='******', password='******') print(json.dumps(speech_to_text.models(), indent=2)) with open(join(dirname(__file__), '../resources/speech.wav'), 'rb') as audio_file: print( json.dumps(speech_to_text.recognize(audio_file, content_type='audio/wav'), indent=2))
def signal_handler(signal, frame): global interrupted interrupted = True def interrupt_callback(): global interrupted return interrupted dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) model = os.environ.get("SNOWBOY_MODEL") stt = SpeechToText(username=os.environ.get("STT_USERNAME"), password=os.environ.get("STT_PASSWORD")) workspace_id = os.environ.get("WORKSPACE_ID") conversation = ConversationV1(username=os.environ.get("CONVERSATION_USERNAME"), password=os.environ.get("CONVERSATION_PASSWORD"), version='2016-02-11') tts = TextToSpeechV1(username=os.environ.get("TTS_USERNAME"), password=os.environ.get("TTS_PASSWORD"), x_watson_learning_opt_out=True) # Optional flag # Create NeoPixel object with appropriate configuration. strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS) # Intialize the library (must be called once before other functions).
def transcribe_audio(path_to_audio_file): username = "******" password = "******" speech_to_text = SpeechToText(username=username, password=password) with open(path_to_audio_file, 'rb') as audio_file: return speech_to_text.recognize(audio_file, content_type='audio/wav')
def main(): try: ser = serial.Serial('/dev/serial0', 9600, timeout=1) ser.isOpen() print("port is opened") except IOError: ser.close() ser.open() print("port was already open, was closed and opene again") dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) stt = SpeechToText(username=os.environ.get("STT_USERNAME"), password=os.environ.get("STT_PASSWORD")) workspace_id = os.environ.get("WORKSPACE_ID") conversation = ConversationV1( username=os.environ.get("CONVERSATION_USERNAME"), password=os.environ.get("CONVERSATION_PASSWORD"), version='2016-09-20') tone_analyzer = ToneAnalyzerV3( username=os.environ.get("TONE_ANALYZER_USERNAME"), password=os.environ.get("TONE_ANALYZER_PASSWORD"), version='2016-02-11') tts = TextToSpeechV1(username=os.environ.get("TTS_USERNAME"), password=os.environ.get("TTS_PASSWORD"), x_watson_learning_opt_out=True) # Optional flag # Create NeoPixel object with appropriate configuration. strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS) # Intialize the library (must be called once before other functions). strip.begin() current_action = '' msg_out = '' while current_action != 'end_conversation': message = listen(stt) # emotion = get_emotion(tone_analyzer, message) print(message) response = send_message(conversation, workspace_id, message, "sad") # Check for a text response from API if response['output']['text']: msg_out = response['output']['text'][0] # Check for action flags sent by the dialog if 'action' in response['output']: current_action = response['output']['action'] # User asked what time is it, so we output the local system time if current_action == 'display_time': msg_out = 'The current time is ' + time.strftime('%I:%M %p') current_action = '' # User asked bot to turn red if current_action == 'red': msg_out = 'Turning Red' for pix in range(0, strip.numPixels()): strip.setPixelColor(pix, Color(255, 0, 0)) strip.show() time.sleep(50 / 1000.0) current_action = '' # User asked bot to turn green if current_action == 'green': msg_out = 'Turning green' for pix in range(0, strip.numPixels()): strip.setPixelColor(pix, Color(0, 255, 0)) strip.show() time.sleep(50 / 1000.0) current_action = '' # User asked bot to turn blue if current_action == 'blue': msg_out = 'Turning blue' for pix in range(0, strip.numPixels()): strip.setPixelColor(pix, Color(0, 0, 255)) strip.show() time.sleep(50 / 1000.0) current_action = '' # User asked bot to turn disco if current_action == 'disco': msg_out = 'Turning disco' theaterChaseRainbow(strip) current_action = '' # User asked bot to set rainbow color if current_action == 'raibow': msg_out = 'Turning rainbow' RainbowCycle(strip) current_action = '' print(msg_out) speak(tts, msg_out) #recorder.play_from_file("output.wav") ser.close()
def main(): try: ser = serial.Serial('/dev/serial0', 9600, timeout=1) ser.isOpen() print ("port is opened") except IOError: ser.close() ser.open() print("port was already open, was closed and opene again") dotenv_path = join(dirname(__file__), '.env') load_dotenv(dotenv_path) stt = SpeechToText( username=os.environ.get("STT_USERNAME"), password=os.environ.get("STT_PASSWORD")) workspace_id = os.environ.get("WORKSPACE_ID") conversation = ConversationV1( username=os.environ.get("CONVERSATION_USERNAME"), password=os.environ.get("CONVERSATION_PASSWORD"), version='2016-09-20') tone_analyzer = ToneAnalyzerV3( username=os.environ.get("TONE_ANALYZER_USERNAME"), password=os.environ.get("TONE_ANALYZER_PASSWORD"), version='2016-02-11') tts = TextToSpeechV1( username=os.environ.get("TTS_USERNAME"), password=os.environ.get("TTS_PASSWORD"), x_watson_learning_opt_out=True) # Optional flag current_action = '' msg_out = '' while current_action != 'end_conversation': message = listen(stt) # emotion = get_emotion(tone_analyzer, message) print(message) response = send_message(conversation, workspace_id, message, "sad") # Check for a text response from API if response['output']['text']: msg_out = response['output']['text'][0] # Check for action flags sent by the dialog if 'action' in response['output']: current_action = response['output']['action'] # User asked what time is it, so we output the local system time if current_action == 'display_time': msg_out = 'The current time is ' + time.strftime('%I:%M %p') current_action = '' # User asked robot to step forward if current_action == 'step forward': msg_out = 'Walking forward' ser.write("1,1=".encode()) current_action = '' # User asked robot to step back if current_action == 'step back': msg_out = 'stepping back' ser.write("1,2=".encode()) current_action = '' # User asked robot to move left if current_action == 'step left': msg_out = 'Moving to the left' ser.write("1,5=".encode()) current_action = '' # User asked robot to move right if current_action == 'step right': msg_out = 'moving to the right' ser.write("1,6=".encode()) current_action = '' # User asked robot to wave if current_action == 'wave': msg_out = 'Waving' ser.write("2,2=".encode()) current_action = '' print(msg_out) speak(tts, msg_out) #recorder.play_from_file("output.wav") ser.close()