Exemple #1
0
    def __init__(self,
                 label='data',
                 folder='.',
                 filename=False,
                 Col1=1,
                 Col2=3,
                 sens1=1000,
                 sens2=5,
                 tmin=False,
                 tmax=False,
                 tshift=False,
                 fmin=False,
                 fmax=False,
                 t=False,
                 ref=False,
                 samp=False):
        if filename:
            self.sens1 = sens1
            self.sens2 = sens2
            self.label = label
            self.Col1 = Col1
            self.Col2 = Col2

            # load data, extract reference & sample field, calc FFT
            self.dat = loadtxt(folder + '/' + filename)
            self.t0 = -self.dat[:, 0]
            L10 = self.dat[:, Col1] * sqrt(2) * sens1
            L20 = self.dat[:, Col2] * sens2

            # create waveform objects (note, extra assignments to save mem.)
            self.ref0 = waveform(t=self.t0, wf=L10 + L20)
            self.samp0 = waveform(t=self.t0, wf=L10 - L20)
            self.ref0.t = self.t0
            self.samp0.t = self.t0
            self.f0 = self.ref0.f
            self.samp0.f = self.ref0.f
        if type(t) != bool:
            assert type(ref) != bool, 'must provide reference data'
            assert type(samp) != bool, 'must provide sample data'
            self.t0 = t
            self.ref0 = waveform(t=self.t0, wf=ref)
            self.samp0 = waveform(t=self.t0, wf=samp)
            self.ref0.t = self.t0
            self.samp0.t = self.t0
            self.f0 = self.ref0.f
            self.samp0.f = self.ref0.f

        # trim times & frequencies
        self.ref = deepcopy(self.ref0)
        self.samp = deepcopy(self.samp0)
        self.trimTime(tmin, tmax)
        self.samp.f = self.ref.f
        self.f = self.ref.f
        self.trimFreq(fmin, fmax)
        self.calcTrans()
        return
Exemple #2
0
 def send_wfms(self, ch_id, **kwargs):
     id_list = kwargs.get('id_list', [ch_id,])
     if ch_id in self.ch1_ids() and ch_id == self.ch1_ids(id_list)[0]:
         bundle = waveform([self.ch1, self.mk11, self.mk12])
         suffix = '_ch1'
     elif ch_id in self.ch2_ids() and ch_id == self.ch2_ids(id_list)[0]:
         bundle = waveform([self.ch2, self.mk21, self.mk22])
         suffix = '_ch2'
     else:
         return
     
     file_list, len_list, name_list = bundle.format_MAGIC1000()
     
     for index, wfm_length in enumerate(len_list):
         self._check_wfm_length(wfm_length, index)
     
     for name, wfm_file in zip(name_list, file_list):
         self._OPC()
         self.instr.write_raw(':MMEM:DATA "%s%s.wfm",%s' % (name, suffix, IEEE_block_format(wfm_file)))
Exemple #3
0
def waveform_creator(empty_elements,nonempty_elements):    
    WaveForm = []    
    Empty = []
    
    for x in range(len(nonempty_elements)):
        ch1 = [nonempty_elements[x][0],nonempty_elements[x][1],'ch1']
        ch2 = [nonempty_elements[x][0],nonempty_elements[x][1],'ch2']
        ch3 = [nonempty_elements[x][0],nonempty_elements[x][1],'ch3']
        ch4 = [nonempty_elements[x][0],nonempty_elements[x][1],'ch4']
        
        for y in range(2,len(nonempty_elements[x])):               
            if (nonempty_elements[x][y].channel == 'ch1'):
                ch1.append(nonempty_elements[x][y])
            elif (nonempty_elements[x][y].channel == 'ch2'):
                ch2.append(nonempty_elements[x][y])
            elif (nonempty_elements[x][y].channel == 'ch3'):
                ch3.append(nonempty_elements[x][y])
            elif (nonempty_elements[x][y].channel == 'ch4'):
                ch4.append(nonempty_elements[x][y])

        ch1 = waveform(ch1)
        ch2 = waveform(ch2)
        ch3 = waveform(ch3)
        ch4 = waveform(ch4)
        ch1.waveGenerator()
        ch2.waveGenerator()
        ch3.waveGenerator()
        ch4.waveGenerator()
                
        WaveForm.append(ch1)
        WaveForm.append(ch2)
        WaveForm.append(ch3)
        WaveForm.append(ch4)
    
    for x in range(len(empty_elements)):
        Empty.append(waveform(empty_elements[x]))
        
    return (WaveForm,Empty)
Exemple #4
0
def proc_RX(WF_file,
            shots,
            rxData=None,
            sigmas=np.arange(0, 5, 0.25),
            deltas=np.arange(-1, 1.5, 0.5),
            TX=None,
            countPeaks=True,
            WF_library=None,
            TX_file=None,
            scat_file=None,
            catalogBuffer=None):
    """
        Routine to process the wavefoms in an ATM waveform file.  Can be run inside
        the loop of fit_ATM_scat, or run on a few waveforms at a time for plot generation
    """
    if TX is None and TX_file is not None:
        with h5py.file(TX_file) as h5f:
            TX = waveform(np.array(h5f['/TX/t']), np.array(h5f(['/TX/p'])))
    TX.t -= TX.nSigmaMean()[0]
    TX.tc = 0

    # make the library of templates
    if WF_library is None:
        WF_library = dict()
        WF_library.update({0.: TX})
        if scat_file is not None:
            WF_library.update(make_rx_scat_catalog(TX, h5_file=scat_file))
    if rxData is None:
        # make the return waveform structure
        D = read_ATM_file(WF_file, shot0=shots[0], nShots=shots[-1] - shots[0])
        rxData = D['RX']
        rxData.t -= np.nanmean(rxData.t)
    else:
        D = dict()
    if countPeaks:
        rxData.nPeaks = rxData.count_peaks(W=4)
    else:
        rxData.nPeaks = np.ones(rxData.size)

    threshold_mask = rxData.p >= 255
    rxData.subBG(t50_minus=3.)
    rxData.tc = [ii.nSigmaMean()[0] for ii in rxData]
    #rxData.tc=rxData.t50()
    rxData.p[threshold_mask] = np.NaN

    # fit the data. Catalogbuffer contains waveform templates that have already been tried
    D_out, catalogBuffer=fit_catalog(rxData, WF_library, sigmas, deltas, return_data_est=True, \
                                     return_catalog=True, catalog=catalogBuffer)
    return D_out, rxData, D, catalogBuffer
Exemple #5
0
 def _preprocessing(self, filename, start=0, end=float('inf')):
     """
     Return the sub-fingerprint matrix from featureExtract.py
     overlap: For the sake of avoiding unpleasant segmentation in the retrieving procedure.
     """
     if start != 0:
         start = int(float(start)*1000)
     if end != float('inf'):
         end = int(float(end)*1000)
     pcm, samplerate = waveform(filename, start, end)
     pcm = downsample(pcm, samplerate, self.sr)
     if type(pcm) == int:
         landmarks = 0
     else:
         landmarks = find_landmark(pcm, self.sr, self.density)
     return landmarks
Exemple #6
0
def main():
    parser = argparse.ArgumentParser(
        description=
        'Fit the waveforms from an ATM file with a set of scattering parameters'
    )
    parser.add_argument('input_file', type=str)
    parser.add_argument('output_file', type=str)
    parser.add_argument('--startShot', '-s', type=int, default=0)
    parser.add_argument('--scat_file', '-f', type=str, default=None)
    parser.add_argument('--nShots', '-n', type=int, default=np.Inf)
    parser.add_argument('--DOPLOT', '-P', action='store_true')
    parser.add_argument('--IR', '-I', action='store_true')
    parser.add_argument('--TXfromRX', action='store_true')
    parser.add_argument('--skipRX', action='store_true', default=False)
    parser.add_argument('--fitTX', action='store_true')
    parser.add_argument('--everyNTX', type=int, default=100)
    parser.add_argument('--TXfile', '-T', type=str, default=None)
    parser.add_argument('--waveforms',
                        '-w',
                        action='store_true',
                        default=False)
    args = parser.parse_args()

    # get the waveform count from the output file
    nWFs = np.minimum(
        args.nShots,
        read_ATM_file(args.input_file, getCountAndReturn=True) -
        args.startShot)
    lastShot = args.startShot + nWFs

    # make the output file
    if os.path.isfile(args.output_file):
        os.remove(args.output_file)
    outDS = ['shot', 'R', 'A', 'B', 'delta_t', 'sigma', 't0', 'K0', 'Kmin', 'Kmax',\
            'latitude', 'longitude', 'elevation']
    out_h5 = h5py.File(args.output_file, 'w')
    for DS in outDS:
        out_h5.create_dataset(DS, (nWFs, ), dtype='f8')

    if args.waveforms:
        out_h5.create_dataset('RX/p', (192, nWFs))
        out_h5.create_dataset('RX/p_fit', (192, nWFs))

    TxP = None
    # get the transmit pulse
    if args.TXfile is not None:
        with h5py.File(args.TXfile, 'r') as fh:
            TX = waveform(np.array(fh['/TX/t']), np.array(fh['/TX/p']))
        TX.t -= TX.nSigmaMean()[0]
        TX.tc = np.array(TX.nSigmaMean()[0])
        TX.normalize()
    else:
        if args.TXfromRX is False:
            TX, TxP = get_tx_est(args.input_file, nShots=5000)
        else:
            TX, TxP = get_tx_est(args.input_file, source='RX', pMin=150)
    if args.fitTX:
        print('fitting the transmit pulse')
        dummy, TxP = get_tx_est(args.input_file,
                                source='TX',
                                TX0=TX,
                                skip_make_TX=True,
                                skip_n_tx=args.everyNTX)

    out_h5.create_dataset("TX/t", data=TX.t.ravel())
    out_h5.create_dataset("TX/p", data=TX.p.ravel())

    if TxP is not None:
        for field in ['t0', 'A', 'R', 'shot', 'sigma']:
            out_h5.create_dataset('/TX/' + field, data=TxP[field])

    if args.skipRX is True:
        out_h5.close()
        return

    # check whether the scattering file exists
    if args.scat_file is not None:
        scat_file = args.scat_file
    else:
        # look for the default scattering file in the directory where the source file is found
        scat_file = os.path.dirname(
            os.path.abspath(__file__)) + '/subsurface_srf_no_BC.h5'
    if not os.path.isfile(scat_file):
        print("%s does not exist" % scat_file)
        exit()

    # make the library of templates
    WF_library = dict()
    WF_library.update({0.: TX})
    if args.IR is False:
        WF_library.update(make_rx_scat_catalog(TX, h5_file=scat_file))

    print("Returns:")
    # loop over start vals (one block at a time...)
    # choose how to divide the output
    blocksize = 1000
    start_vals = args.startShot + np.arange(0, nWFs, blocksize, dtype=int)

    catalogBuffer = None
    time_old = time()

    if args.IR is True:
        countPeaks = False
        sigmas = np.arange(0, 5, 0.125)
    else:
        countPeaks = True
        sigmas = np.arange(0, 5, 0.25)
        # choose a set of delta t values
        deltas = np.arange(-1, 1.5, 0.5)

    for shot0 in start_vals:
        shots = np.arange(shot0, np.minimum(shot0 + blocksize, lastShot))
        tic = time()
        D_out, rxData, D, catalogBuffer=proc_RX(args.input_file, shots, sigmas=sigmas, deltas=deltas,\
             TX=TX, WF_library=WF_library, catalogBuffer=catalogBuffer, countPeaks=countPeaks)
        delta_time = time() - tic
        N_out = D_out['shot'].size
        outShot0 = shot0 - args.startShot
        for key in outDS:
            try:
                if key in D_out:
                    out_h5[key][outShot0:outShot0 + N_out] = D_out[key].ravel()
                else:
                    if key in D:
                        out_h5[key][outShot0:outShot0 + N_out] = D[key].ravel()
            except OSError:
                print("OSError for key=%s, outshot0=%d, outshotN=%d, nDS=%d" %
                      (key, outShot0, outShot0 + N_out, out_h5[key].size))

        if args.waveforms:
            out_h5['RX/p_fit'][:, outShot0:outShot0 + N_out] = D_out['wf_est']
            out_h5['RX/p'][:, outShot0:outShot0 + N_out] = rxData.p

        print("  shot=%d out of %d, N_keys=%d, dt=%5.1f" %
              (shot0 + blocksize, start_vals[-1] + blocksize,
               len(catalogBuffer.keys()), delta_time))
    print("   time to fit RX=%3.2f" % (time() - time_old))

    if args.waveforms:
        out_h5.create_dataset('RX/t', data=rxData.t.ravel())

    out_h5.close()
Exemple #7
0
if asp.ch_play != 1:
    raise ValueError("El código no está preparado para reproducir \
    en 2 canales")

print("Canales para grabar: ch_rec=%i" % asp.ch_rec)

#%%

p = pyaudio.PyAudio()
s_f = []
n = int(bsp.dT / bsp.dt)

if form == 'freq':
    s_0 = np.sin(2 * np.pi * np.arange(asp.sr * bsp.dT) * bsp.freq / asp.sr)
else:
    s_0 = waveform(form, n)
s_0 = bsp.vol * s_0.astype(np.float32)


def callback(in_data, frame_count, time_info, status):
    return (s_0, pyaudio.paContinue)


streamplay = p.open(format=asp.ft_play,
                    channels=asp.ch_play,
                    rate=asp.sr,
                    output=True,
                    stream_callback=callback)

streamrecord = p.open(format=asp.ft_rec,
                      channels=asp.ch_rec,
Exemple #8
0
def play_record(
    T,  # duración en seg de la grabación
    form='freq',  # forma de onda {'freq', 'sin', 'squ', 'tri', 'saw'}
    mode='txt',  # modo de funcionamiento del programa {'txt', 'wav'}
    savetxt=False,
    showplot=True,
    buffer={
        'dT': 1,
        'dt': 0.005,
        'freq': 440,
        'vol': 1
    },
    audio={
        'sr': 44000,
        'ch_play': 1,
        'ch_rec': 1,
        'ft_play': pyaudio.paInt16,
        'ft_rec': pyaudio.paInt16
    },
    filendir={
        'fname': 'output',
        'fdir': os.getcwd()
    },
):
    """Reproduce una señal de sonido y graba por jack al mismo tiempo.

Crea una señal cuya forma de onda está dada por 'form'. Ésta crea un \
buffer cuyos frames duran 'dt'. Reproduce y graba durante un tiempo \
'T'. Devuelve el array reproducido y la lista grabada. 

Tiene dos modos de funcionamiento dados por 'mode'. Si 'mode=="wav", \
guarda un archivo de audio. Y si 'mode=="txt"', 
Además, si 'savetxt==True', guarda un archivo de texto. Y si \
'showplot=="True", muestra un gráfico.
    
    """

    import pyaudio
    import numpy as np
    import os
    import wave
    import matplotlib.pyplot as plt

    from new_name import new_name
    from waveform import waveform
    from argparse import Namespace

    home = os.getcwd()

    ref = {
        'dT': 1,
        'dt': 0.005,
        'freq': 440,
        'vol': 1,
        'sr': 44000,
        'ch_play': 1,
        'ch_rec': 1,
        'ft_play': pyaudio.paInt16,
        'ft_rec': pyaudio.paInt16,
        'fname': 'output',
        'fdir': os.getcwd()
    }
    bkey = ['dT', 'dt', 'freq', 'vol']
    akey = ['sr', 'ch_play', 'ch_rec', 'ft_play', 'ft_rec']
    fkey = ['fname', 'fdir']

    for key in bkey:
        if key not in buffer:
            buffer.update({key: ref[key]})
    for key in akey:
        if key not in audio:
            audio.update({key: ref[key]})
    for key in fkey:
        if key not in filendir:
            filendir.update({key: ref[key]})

    bsp = Namespace(**buffer)  # buffer space
    asp = Namespace(**audio)  # audio space
    fsp = Namespace(**filendir)  # filendir space

    if mode != 'txt':
        print("Modo: 'wav'")
    else:
        print("Modo: 'txt'")
        print("Guardar txt: %s" % savetxt)
        print("Mostrar gráfico: %s" % showplot)

    print("Longitud del buffer: %i" % int(bsp.dT / bsp.dt))
    if int(bsp.dT / bsp.dt) != bsp.dT / bsp.dt:
        print("¡Ojo! El intervalo dt no entra un número entero \
        de veces en dT")
        bsp.dt = bsp.dT / int(bsp.dT / bsp.dt)
        print("Intervalo redefinido a %f s" % bsp.dt)

    if int(T / bsp.dT) != T / bsp.dT:
        print("¡Ojo! El tiempo de grabación \
        no es un número entero de veces dT")
        if int(T / bsp.dT) != 0:
            T = int(T / bsp.dT) * bsp.dT
        else:
            print("¡Ojo! El tiempo de grabación era menor a dT")
            T = bsp.dT
        print("Tiempo de grabación redefinido a %f s" % T)

    p = pyaudio.PyAudio()
    s_f = []
    n = int(bsp.dT / bsp.dt)

    if form == 'freq':
        s_0 = np.sin(2 * np.pi * np.arange(asp.sr * bsp.dT) * bsp.freq /
                     asp.sr)
    else:
        s_0 = waveform(form, n)
    s_0 = bsp.vol * s_0.astype(np.float32)

    def callback(in_data, frame_count, time_info, status):
        return (s_0, pyaudio.paContinue)

    streamplay = p.open(format=asp.ft_play,
                        channels=asp.ch_play,
                        rate=asp.sr,
                        output=True,
                        stream_callback=callback)

    streamrecord = p.open(format=asp.ft_rec,
                          channels=asp.ch_rec,
                          rate=asp.sr,
                          input=True,
                          frames_per_buffer=n)

    streamplay.start_stream()
    print("* recording")
    streamrecord.start_stream()
    data = streamrecord.read(int(asp.sr * T))
    print("* done recording")

    streamrecord.stop_stream()
    streamplay.stop_stream()

    streamrecord.close()
    streamplay.close()

    p.terminate()

    if mode == 'txt':
        s_f.extend(np.fromstring(data, 'Float32'))
        if savetxt:
            os.chdir(fsp.fdir)
            savetxt((new_name(fsp.fname, 'txt', fsp.fdir) + '.txt'), s_f)
            os.chdir(home)
        if showplot:
            plt.figure()
            plt.plot(s_f[2000:3000], 'ro-')
            plt.ylabel('señal grabada')
            plt.grid()
            plt.show()
        return s_0, s_f

    else:
        s_f.append(data)
        fsp.fname = new_name(fsp.fname, 'wav', fsp.fdir)
        os.chdir(fsp.fdir)
        wf = wave.open((fsp.fname + '.wav'), 'wb')
        wf.setnchannels(asp.ch_rec)
        wf.setsampwidth(p.get_sample_size(asp.ft_rec))
        wf.setframerate(asp.sr)
        wf.writeframes(b''.join(s_f))
        wf.close()
        os.chdir(home)
    def send_wfms(self, ch_id, **kwargs):
        if ('id_list' in kwargs
                and ch_id == kwargs['id_list'][0]) or kwargs.get(
                    'clear_buffer', False):
            self.safe_write('SLISt:SEQuence:DELete ALL')
            self.safe_write('WLISt:WAVeform:DELete ALL')
        id_list = kwargs.get('id_list', [
            ch_id,
        ])
        if ch_id in self.ch1_ids() and ch_id == self.ch1_ids(id_list)[0]:
            bundle = waveform([self.ch1, self.mk11, self.mk12])
            suffix = '_ch1'
        elif ch_id in self.ch2_ids() and ch_id == self.ch2_ids(id_list)[0]:
            bundle = waveform([self.ch2, self.mk21, self.mk22])
            suffix = '_ch2'
        else:
            return

        chunk_size = 2**20
        wave_data, mk_data, len_list, name_list = bundle.format_TekWFM_AWG70000(
            chunk_size=chunk_size)

        for index, wfm_length in enumerate(len_list):
            self._check_wfm_length(wfm_length, index)

        self._OPC()  #complete all pending operations
        for wave_block_chunked, mk_block_chunked, wfm_length, name in zip(
                wave_data, mk_data, len_list, name_list):
            info = ({'name': name + suffix, 'size': wfm_length})
            self.safe_write(
                'WLISt:WAVeform:NEW "{name}",{size}'.format(**info))
            #self.safe_write('WLISt:WAVeform:NEW "{name}",{size},REAL'.format(**info))
            for chunk_index in range(len(wave_block_chunked)):
                numpnts = chunk_size if chunk_index < len(
                    wave_block_chunked
                ) - 1 else wfm_length - chunk_index * chunk_size
                wave_block, mk_block = wave_block_chunked[
                    chunk_index], mk_block_chunked[chunk_index]
                info.update({
                    'start_index': chunk_index * chunk_size,
                    'size': numpnts
                })
                info.update({
                    'wave_block_data': wave_block,
                    'marker_block_data': mk_block
                })
                self.instr.write_raw(
                    'WLISt:WAVeform:DATA "{name}",{start_index},{size},{wave_block_data}'
                    .format(**info))
                self.instr.write_raw(
                    'WLISt:WAVeform:MARKer:DATA "{name}",{start_index},{size},{marker_block_data}'
                    .format(**info))

                # cmd    = 'WLISt:WAVeform:DATA "{name}",{start_index},{size},{wave_block_data}'.format(**info)
                # header = 'WLISt:WAVeform:DATA "{name}",{start_index},{size},'.format(**info)
                # print cmd[:len(header)+10]
                # cmd    = 'WLISt:WAVeform:MARKer:DATA "{name}",{start_index},{size},{marker_block_data}'.format(**info)
                # header = 'WLISt:WAVeform:MARKer:DATA "{name}",{start_index},{size},'.format(**info)
                # print cmd[:len(header)+10]

                self._OPC()