type=int, default=5, help='Number of hidden layers') parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate') parser.add_argument('--stopping_loss', type=float, default=0.1, help='loss at which training stops') FLAGS, unparsed = parser.parse_known_args() SAMPLE_RATE = 24000 inputs, targets = make_batch('assets/SMvocals.wav') num_time_samples = inputs.shape[1] num_channels = 1 gpu_fraction = 1 model = Model(num_time_samples=num_time_samples, num_channels=num_channels, gpu_fraction=gpu_fraction, num_layers=FLAGS.num_layers or 5, learning_rate=FLAGS.learning_rate, stopping_loss=FLAGS.stopping_loss) tic = time() model.train(inputs, targets) toc = time()
from time import time from wavenet.utils import make_batch from wavenet.models import Model, Generator from IPython.display import Audio #get_ipython().magic(u'matplotlib inline') # In[ ]: inputs, targets = make_batch('assets/voice.wav') num_time_samples = inputs.shape[1] num_channels = 1 gpu_fraction = 1.0 model = Model(num_time_samples=num_time_samples, num_channels=num_channels, gpu_fraction=gpu_fraction) Audio(inputs.reshape(inputs.shape[1]), rate=44100) # In[ ]: tic = time()
from time import time from wavenet.utils import make_batch from wavenet.models import Model, Generator num_channels = 1 gpu_fraction = 1.0 num_classes = 2048 inputs, targets = make_batch('assets/voice.wav', num_classes) num_time_samples = inputs.shape[1] print inputs.shape, targets.shape, num_time_samples model = Model( #num_time_samples=num_time_samples, num_channels=num_channels, gpu_fraction=gpu_fraction, num_classes=num_classes, prob_model_type='softmax') tic = time() model.train(inputs, targets) toc = time() print('Training took {} seconds.'.format(toc - tic))
model = Model(num_time_samples=num_time_samples, num_channels=num_channels, gpu_fraction=gpu_fraction, num_classes=num_classes, num_blocks=num_blocks, num_layers=num_layers, num_hidden=num_hidden) inputlist = [] targetlist = [] for w in WavList: path = 'assets/' + w + '.wav' inputs, targets = make_batch(path, sample_rate, duration=duration) inputlist.append(inputs) targetlist.append(targets) inputlist = np.stack(inputlist) targetlist = np.stack(targetlist) print(inputlist.shape, targetlist.shape) train_step, losses = model.train( inputlist.reshape((inputlist.shape[0], inputlist.shape[2], 1)), targetlist.reshape((targetlist.shape[0], -1))) generator = Generator(model) new_pred = generator.run([[np.random.randn()]], num_time_samples * 2)