Exemple #1
0
    def test(self):
        """ Test that algorithmically-like submodels are correctly merged """
        """ Construct model with 3 submodels: two SSA and one FBA """
        mdl = Model()

        cmp = mdl.compartments.create(id='comp_0', name='compartment 0')

        species = []
        for i in range(5):
            st = mdl.species_types.create(id='spec_type_{}'.format(i),
                                          type=onto['WC:metabolite'])
            s = mdl.species.create(species_type=st, compartment=cmp)
            s.id = s.gen_id()
            species.append(s)

        submdl_0 = mdl.submodels.create(
            id='submdl_0',
            framework=onto['WC:stochastic_simulation_algorithm'])
        submdl_1 = mdl.submodels.create(
            id='submdl_1',
            framework=onto['WC:stochastic_simulation_algorithm'])
        submdl_2 = mdl.submodels.create(
            id='submdl_2', framework=onto['WC:dynamic_flux_balance_analysis'])
        submdl_3 = mdl.submodels.create(
            id='submdl_3', framework=onto['WC:dynamic_flux_balance_analysis'])

        rxn_0_0 = mdl.reactions.create(id='rxn_0_0', submodel=submdl_0)
        rxn_0_0.participants.add(
            SpeciesCoefficient(species=species[0], coefficient=-1))
        rxn_0_0.participants.add(
            SpeciesCoefficient(species=species[1], coefficient=-1))
        rxn_0_0.participants.add(
            SpeciesCoefficient(species=species[2], coefficient=1))

        rxn_0_1 = mdl.reactions.create(id='rxn_0_1', submodel=submdl_0)
        rxn_0_1.participants.add(
            SpeciesCoefficient(species=species[0], coefficient=-1))
        rxn_0_1.participants.add(
            SpeciesCoefficient(species=species[1], coefficient=-1))
        rxn_0_1.participants.add(
            SpeciesCoefficient(species=species[2], coefficient=1))

        rxn_1_0 = mdl.reactions.create(id='rxn_1_0', submodel=submdl_1)
        rxn_1_0.participants.add(
            SpeciesCoefficient(species=species[0], coefficient=-1))
        rxn_1_0.participants.add(
            SpeciesCoefficient(species=species[1], coefficient=-1))
        rxn_1_0.participants.add(
            SpeciesCoefficient(species=species[3], coefficient=1))

        rxn_1_1 = mdl.reactions.create(id='rxn_1_1', submodel=submdl_1)
        rxn_1_1.participants.add(
            SpeciesCoefficient(species=species[0], coefficient=-1))
        rxn_1_1.participants.add(
            SpeciesCoefficient(species=species[1], coefficient=-1))
        rxn_1_1.participants.add(
            SpeciesCoefficient(species=species[3], coefficient=1))

        rxn_2_0 = mdl.reactions.create(id='rxn_2_0', submodel=submdl_2)
        rxn_2_0.participants.add(
            SpeciesCoefficient(species=species[0], coefficient=-1))
        rxn_2_0.participants.add(
            SpeciesCoefficient(species=species[1], coefficient=-1))
        rxn_2_0.participants.add(
            SpeciesCoefficient(species=species[4], coefficient=1))

        rxn_2_1 = mdl.reactions.create(id='rxn_2_1', submodel=submdl_2)
        rxn_2_1.participants.add(
            SpeciesCoefficient(species=species[0], coefficient=-1))
        rxn_2_1.participants.add(
            SpeciesCoefficient(species=species[1], coefficient=-1))
        rxn_2_1.participants.add(
            SpeciesCoefficient(species=species[4], coefficient=1))

        dfba_obj_rxn_2_0 = mdl.dfba_obj_reactions.create(id='dfba_obj_rxn_2_0',
                                                         submodel=submdl_2)
        dfba_obj_rxn_2_1 = mdl.dfba_obj_reactions.create(id='dfba_obj_rxn_2_1',
                                                         submodel=submdl_2)
        dfba_obj_rxn_3_0 = mdl.dfba_obj_reactions.create(id='dfba_obj_rxn_3_0',
                                                         submodel=submdl_3)
        dfba_obj_rxn_3_1 = mdl.dfba_obj_reactions.create(id='dfba_obj_rxn_3_1',
                                                         submodel=submdl_3)

        dfba_obj_2 = mdl.dfba_objs.create(
            id='dfba_obj_2',
            submodel=submdl_2,
            expression=DfbaObjectiveExpression.deserialize(
                'rxn_2_0 + 2 * rxn_2_1 + 3 * dfba_obj_rxn_2_0 + dfba_obj_rxn_2_1',
                {
                    Reaction: {
                        'rxn_2_0': rxn_2_0,
                        'rxn_2_1': rxn_2_1,
                    },
                    DfbaObjReaction: {
                        'dfba_obj_rxn_2_0': dfba_obj_rxn_2_0,
                        'dfba_obj_rxn_2_1': dfba_obj_rxn_2_1,
                    },
                })[0])
        dfba_obj_3 = mdl.dfba_objs.create(
            id='dfba_obj_3',
            submodel=submdl_3,
            expression=DfbaObjectiveExpression.deserialize(
                'dfba_obj_rxn_3_0 + dfba_obj_rxn_3_1', {
                    Reaction: {},
                    DfbaObjReaction: {
                        'dfba_obj_rxn_3_0': dfba_obj_rxn_3_0,
                        'dfba_obj_rxn_3_1': dfba_obj_rxn_3_1,
                    }
                })[0])

        mdl.parameters.create(id='param_0')
        mdl.parameters.create(id='param_1')
        mdl.parameters.create(id='param_2')

        mdl.observations.create(id='obs_0')
        mdl.observations.create(id='obs_1')
        mdl.observations.create(id='obs_2')
        mdl.observations.create(id='obs_3')
        mdl.observations.create(id='obs_4')
        mdl.observations.create(id='obs_5')
        mdl.observations.create(id='obs_6')
        mdl.observations.create(id='obs_7')

        ev_0 = Evidence(observation=mdl.observations[0],
                        type=onto['WC:supporting_evidence'])
        ev_1 = Evidence(observation=mdl.observations[1],
                        type=onto['WC:supporting_evidence'])
        ev_2 = Evidence(observation=mdl.observations[2],
                        type=onto['WC:supporting_evidence'])
        ev_3 = Evidence(observation=mdl.observations[3],
                        type=onto['WC:supporting_evidence'])
        submdl_0.evidence.extend([ev_0, ev_1])
        submdl_1.evidence.extend([ev_0, ev_2, ev_3])
        submdl_2.evidence.extend([ev_1, ev_2])
        submdl_3.evidence.extend([ev_3])
        dfba_obj_2.evidence.append(ev_2)
        dfba_obj_3.evidence.append(ev_3)

        mdl.conclusions.create(id='conclusion_0',
                               submodels=[submdl_0, submdl_1],
                               evidence=[
                                   Evidence(
                                       observation=mdl.observations[4],
                                       type=onto['WC:supporting_evidence'])
                               ])
        mdl.conclusions.create(id='conclusion_1',
                               submodels=[submdl_0, submdl_2],
                               evidence=[
                                   Evidence(
                                       observation=mdl.observations[5],
                                       type=onto['WC:supporting_evidence'])
                               ])
        mdl.conclusions.create(id='conclusion_2',
                               submodels=[submdl_1, submdl_2],
                               dfba_objs=[dfba_obj_2],
                               evidence=[
                                   Evidence(
                                       observation=mdl.observations[6],
                                       type=onto['WC:supporting_evidence'])
                               ])
        mdl.conclusions.create(id='conclusion_2',
                               submodels=[submdl_1, submdl_3],
                               dfba_objs=[dfba_obj_3],
                               evidence=[
                                   Evidence(
                                       observation=mdl.observations[7],
                                       type=onto['WC:supporting_evidence'])
                               ])

        mdl.references.create(id='ref_0', submodels=[submdl_0])
        mdl.references.create(id='ref_1', submodels=[submdl_1])
        mdl.references.create(id='ref_2',
                              submodels=[submdl_2],
                              dfba_objs=[dfba_obj_2])
        mdl.references.create(id='ref_2',
                              submodels=[submdl_3],
                              dfba_objs=[dfba_obj_3])

        submdl_0.identifiers.create(id='xref_0')
        submdl_1.identifiers.create(id='xref_1')
        submdl_2.identifiers.create(id='xref_2', dfba_objs=[dfba_obj_2])
        submdl_3.identifiers.create(id='xref_3', dfba_objs=[dfba_obj_3])
        """ Merge algorithmically-like submodels """
        merged_mdl = mdl.copy()
        MergeAlgorithmicallyLikeSubmodelsTransform().run(merged_mdl)
        merged_submdl_ssa = merged_mdl.submodels.get_one(
            framework=onto['WC:stochastic_simulation_algorithm'])
        merged_submdl_fba = merged_mdl.submodels.get_one(
            framework=onto['WC:dynamic_flux_balance_analysis'])
        """ Test submodels merged corrected """
        self.assertEqual(len(merged_mdl.compartments), len(mdl.compartments))
        self.assertEqual(len(merged_mdl.species_types), len(mdl.species_types))
        self.assertEqual(len(merged_mdl.submodels), 2)
        self.assertEqual(len(merged_mdl.parameters), len(mdl.parameters))
        self.assertEqual(len(merged_mdl.reactions), len(mdl.reactions))
        self.assertEqual(len(merged_mdl.dfba_objs), 1)
        self.assertEqual(len(merged_mdl.dfba_obj_reactions),
                         len(mdl.dfba_obj_reactions))
        self.assertEqual(len(merged_mdl.observations), len(mdl.observations))
        self.assertEqual(len(merged_mdl.conclusions), len(mdl.conclusions))
        self.assertEqual(len(merged_mdl.references), len(mdl.references))

        self.assertIn(merged_submdl_ssa.id, [
            '{0}_{1}'.format(submdl_0.id, submdl_1.id),
            '{1}_{0}'.format(submdl_0.id, submdl_1.id),
        ])
        self.assertIn(merged_submdl_fba.id, [
            '{0}_{1}'.format(submdl_2.id, submdl_3.id),
            '{1}_{0}'.format(submdl_2.id, submdl_3.id),
        ])

        self.assertEqual(merged_submdl_ssa.framework,
                         onto['WC:stochastic_simulation_algorithm'])
        self.assertEqual(merged_submdl_fba.framework,
                         onto['WC:dynamic_flux_balance_analysis'])

        self.assertEqual(
            len(merged_submdl_ssa.get_children(kind='submodel',
                                               __type=Species)),
            len(
                set(
                    submdl_0.get_children(kind='submodel', __type=Species) +
                    submdl_1.get_children(kind='submodel', __type=Species))))
        self.assertEqual(
            len(merged_submdl_fba.get_children(kind='submodel',
                                               __type=Species)),
            len(
                set(
                    submdl_2.get_children(kind='submodel', __type=Species) +
                    submdl_3.get_children(kind='submodel', __type=Species))))

        self.assertEqual(
            len(merged_submdl_ssa.reactions),
            len(set(submdl_0.reactions) | set(submdl_1.reactions)))
        self.assertEqual(
            len(merged_submdl_fba.reactions),
            len(set(submdl_2.reactions) | set(submdl_3.reactions)))

        self.assertEqual(merged_submdl_ssa.dfba_obj, None)
        self.assertEqual(merged_submdl_fba.dfba_obj.id,
                         merged_submdl_fba.dfba_obj.gen_id())

        self.assertEqual(len(merged_submdl_fba.dfba_obj.expression.reactions),
                         len(submdl_2.reactions) + len(submdl_3.reactions))
        self.assertEqual(
            len(merged_submdl_fba.dfba_obj.expression.dfba_obj_reactions),
            len(submdl_2.dfba_obj_reactions) +
            len(submdl_3.dfba_obj_reactions))

        self.assertEqual(merged_submdl_ssa.dfba_obj_reactions, [])
        self.assertEqual(
            len(merged_submdl_fba.dfba_obj_reactions),
            len(submdl_2.dfba_obj_reactions) +
            len(submdl_3.dfba_obj_reactions))

        self.assertEqual(len(set(submdl_0.evidence) | set(submdl_1.evidence)),
                         len(merged_submdl_ssa.evidence))
        self.assertEqual(len(merged_submdl_fba.evidence),
                         len(set(submdl_2.evidence) | set(submdl_3.evidence)))

        self.assertEqual(
            len(set(submdl_0.conclusions) | set(submdl_1.conclusions)),
            len(merged_submdl_ssa.conclusions))
        self.assertEqual(
            len(merged_submdl_fba.conclusions),
            len(set(submdl_2.conclusions) | set(submdl_3.conclusions)))

        self.assertEqual(
            len(set(submdl_0.references) | set(submdl_1.references)),
            len(merged_submdl_ssa.references))
        self.assertEqual(
            len(merged_submdl_fba.references),
            len(set(submdl_2.references) | set(submdl_3.references)))

        self.assertEqual(
            len(set(submdl_0.identifiers) | set(submdl_1.identifiers)),
            len(merged_submdl_ssa.identifiers))
        self.assertEqual(
            len(merged_submdl_fba.identifiers),
            len(set(submdl_2.identifiers) | set(submdl_3.identifiers)))
Exemple #2
0
    def test(self):
        model = Model()

        c = model.compartments.create(id='c')

        t0 = model.species_types.create(id='s0', type=onto['WC:metabolite'])
        t1 = model.species_types.create(id='s1', type=onto['WC:metabolite'])
        t2 = model.species_types.create(id='s2', type=onto['WC:metabolite'])

        s0 = model.species.create(id='s0[c]', species_type=t0, compartment=c)
        s1 = model.species.create(id='s1[c]', species_type=t1, compartment=c)
        s2 = model.species.create(id='s2[c]', species_type=t2, compartment=c)

        submodel = model.submodels.create(id='submodel', framework='SSA')

        r0 = model.reactions.create(id='r0',
                                    reversible=True,
                                    submodel=submodel)
        r0.participants.create(species=s0, coefficient=-2)
        r0.participants.create(species=s1, coefficient=3)

        r0_f = r0.rate_laws.create(direction=RateLawDirection.forward,
                                   model=model)
        a = model.parameters.create(id='a',
                                    value=1.,
                                    units=unit_registry.parse_units('s^-1'))
        r0_f.expression, error = RateLawExpression.deserialize(
            'a', {Parameter: {
                'a': a
            }})
        assert error is None, str(error)

        r0_b = r0.rate_laws.create(
            direction=RateLawDirection.backward,
            expression=RateLawExpression(expression='b'),
            model=model)
        b = model.parameters.create(id='b',
                                    value=1.,
                                    units=unit_registry.parse_units('s^-1'))
        r0_b.expression, error = RateLawExpression.deserialize(
            'b', {Parameter: {
                'b': b
            }})
        assert error is None, str(error)

        r0.references.create(id='ref_0', model=model)
        r0.identifiers.create(namespace='x', id='y')

        r1 = model.reactions.create(id='r1',
                                    reversible=False,
                                    submodel=submodel)
        r1.participants.create(species=s1, coefficient=-3)
        r1.participants.create(species=s2, coefficient=4)

        r1_f = r1.rate_laws.create(direction=RateLawDirection.forward,
                                   model=model)
        c = model.parameters.create(id='c',
                                    value=1.,
                                    units=unit_registry.parse_units('s^-1'))
        r1_f.expression, error = RateLawExpression.deserialize(
            'c', {Parameter: {
                'c': c
            }})
        assert error is None, str(error)

        r1_b = r1.rate_laws.create(direction=RateLawDirection.backward,
                                   model=model)
        d = model.parameters.create(id='d',
                                    value=1.,
                                    units=unit_registry.parse_units('s^-1'))
        r1_b.expression, error = RateLawExpression.deserialize(
            'd', {Parameter: {
                'd': d
            }})
        assert error is None, str(error)

        r1.references.create(id='ref_1', model=model)
        r1.identifiers.create(namespace='xx', id='yy')

        model2 = model.copy()
        submodel2 = model2.submodels.get_one(id='submodel')
        r0 = submodel2.reactions.get_one(id='r0')

        SplitReversibleReactionsTransform().run(model2)

        self.assertEqual(set([x.id for x in submodel2.reactions]),
                         set(['r0_forward', 'r0_backward', 'r1']))

        r0_f = submodel2.reactions.get_one(id='r0_forward')
        r0_b = submodel2.reactions.get_one(id='r0_backward')
        r1_2 = submodel2.reactions.get_one(id='r1')
        attr = Reaction.Meta.attributes['participants']
        self.assertEqual(attr.serialize(r0_f.participants),
                         '[c]: (2) s0 ==> (3) s1')
        self.assertEqual(attr.serialize(r0_b.participants),
                         '[c]: (3) s1 ==> (2) s0')
        self.assertEqual(attr.serialize(r1_2.participants),
                         '[c]: (3) s1 ==> (4) s2')
        self.assertEqual(len(r0_f.rate_laws), 1)
        self.assertEqual(len(r0_b.rate_laws), 1)
        self.assertEqual(r0_f.rate_laws[0].direction, RateLawDirection.forward)
        self.assertEqual(r0_b.rate_laws[0].direction, RateLawDirection.forward)
        self.assertEqual(r0_f.rate_laws[0].expression.expression, 'a')
        self.assertEqual(r0_b.rate_laws[0].expression.expression, 'b')
        self.assertEqual(r0_f.rate_laws[0].id, r0_f.rate_laws[0].gen_id())
        self.assertEqual(r0_b.rate_laws[0].id, r0_b.rate_laws[0].gen_id())
        self.assertEqual(r0_f.rate_laws[0].id, 'r0_forward-forward')
        self.assertEqual(r0_b.rate_laws[0].id, 'r0_backward-forward')
        self.assertEqual(
            r1_2.rate_laws.get_one(
                direction=RateLawDirection.forward).expression.expression, 'c')
        self.assertEqual(
            r1_2.rate_laws.get_one(
                direction=RateLawDirection.backward).expression.expression,
            'd')

        self.assertEqual(set([x.id for x in r0_f.references]), set(['ref_0']))
        self.assertEqual(set([x.id for x in r0_b.references]), set(['ref_0']))
        self.assertEqual(set([x.id for x in r1_2.references]), set(['ref_1']))

        self.assertEqual(set([x.id for x in r0_f.identifiers]), set(['y']))
        self.assertEqual(set([x.id for x in r0_b.identifiers]), set(['y']))
        self.assertEqual(set([x.id for x in r1_2.identifiers]), set(['yy']))

        self.assertEqual(r0.submodel, None)
        self.assertEqual(r0.participants, [])
        self.assertEqual(r0.rate_laws, [])
        self.assertEqual(r0.references, [])
        self.assertEqual(r0.identifiers, [])

        for attr_name, attr in chain(Reaction.Meta.attributes.items(),
                                     Reaction.Meta.related_attributes.items()):
            if isinstance(attr, RelatedAttribute):
                val = getattr(r0, attr_name)
                self.assertTrue(val is None
                                or (isinstance(val, list) and len(val) == 0))