def __call__(self, inputs=None, outputs=None, arguments=None, includes=None, local=False, environment=None, collect=False): abstraction = CurrentAbstraction() nest = CurrentNest() # Engine Functions define inputs and output member attributes try: inputs = inputs or self.inputs outputs = outputs or self.outputs except AttributeError: pass inputs = parse_input_list(inputs) outputs = parse_output_list(outputs, inputs) includes = parse_input_list(includes) + parse_input_list(self.includes) command = self.command_format(inputs, outputs, arguments) options = Options(environment=dict(self.environment), collect=inputs if collect else None) if local: options.local = True if environment: options.environment.update(environment) if nest.batch: options.batch = nest.batch nest.schedule(abstraction, self, command, list(inputs) + list(includes), outputs, options, nest.symbol) return outputs
def _generate(self): with self: debug(D_ABSTRACTION, 'Generating Abstraction {0}'.format(self)) function = parse_function(self.function) inputs = parse_input_list(self.inputs) includes = parse_input_list(self.includes) output = self.outputs nest = CurrentNest() if not os.path.isabs(output): output = os.path.join(nest.work_dir, output) while len(inputs) > self.group: next_inputs = [] for group in groups(inputs, self.group): output_file = next(nest.stash) next_inputs.append(output_file) with Options(local=self.options.local, collect=group if self.collect else None): yield function(group, output_file, None, includes) inputs = next_inputs with Options(local=self.options.local, collect=inputs if self.collect else None): yield function(inputs, output, None, includes)
def __call__(self, inputs=None, outputs=None, arguments=None, includes=None, local=False, environment=None, collect=False): abstraction = CurrentAbstraction() nest = CurrentNest() # Engine Functions define inputs and output member attributes try: inputs = inputs or self.inputs outputs = outputs or self.outputs except AttributeError: pass inputs = parse_input_list(inputs) outputs = parse_output_list(outputs, inputs) includes = parse_input_list(includes) + parse_input_list(self.includes) command = self.command_format(inputs, outputs, arguments) options = Options(environment=dict(self.environment), collect=inputs if collect else None) if local: options.local = True if environment: options.environment.update(environment) nest.schedule(abstraction, self, command, list(inputs) + list(includes), outputs, options) return outputs
def _generate(self): with self: debug(D_ABSTRACTION, 'Generating Abstraction {0}'.format(self)) function = parse_function(self.function) inputs_a = parse_input_list(self.inputs_a) inputs_b = parse_input_list(self.inputs_b) includes = parse_input_list(self.includes) # If native is enabled, then use allpairs_master, otherwise # generate tasks as part of the DAG. # # Note: parse_output_list flattens inputs, so we need to manually # translate pairs into a single string. if self.native: # Store inputs A and B lists as required by allpairs_master inputs_a_file = next(self.nest.stash) with open(inputs_a_file, 'w') as fs: for input_file in map(str, inputs_a): fs.write(input_file + '\n') inputs_b_file = next(self.nest.stash) with open(inputs_b_file, 'w') as fs: for input_file in map(str, inputs_b): fs.write(input_file + '\n') inputs = [inputs_a_file, inputs_b_file] outputs = parse_output_list(self.outputs, ['_'.join( [os.path.basename(str(s)) for s in p]) for p in inputs]) # Schedule allpairs_master with Options(local=True, collect=[i] if self.collect else None): allpairs_master = parse_function( 'allpairs_master -p {0} {{IN}} {{ARG}} > {{OUT}}'.format(self.port)) yield allpairs_master(inputs, outputs, function.path, includes + [function.path]) else: inputs = list(itertools.product(inputs_a, inputs_b)) outputs = parse_output_list(self.outputs, ['_'.join( [os.path.basename(str(s)) for s in p]) for p in inputs]) # We use a wrapper script to collect the output of the # comparison and put in {INPUT_A} {INPUT_B} {OUTPUT} format, as # used by allpairs_master. for i, o in zip(inputs, outputs): tmp_output = next(self.nest.stash) with Options(local=self.options.local, collect=[i] if self.collect else None): output = function(i, tmp_output, None, includes) # Wrapper script should run locally and we should always # try to collect the temporary intermediate output file. with Options(local=True, collect=[tmp_output]): yield AllPairsCompareWrapper(output, o, [os.path.basename(str(p)) for p in i], None)
def CurrentOptions(): """ Return current Weaver Options. .. note:: Script-level options will override local options. """ from weaver.options import Options top = WeaverOptions.top() or Options() return Options(cpu=CurrentScript().options.cpu or top.cpu, memory=CurrentScript().options.memory or top.memory, disk=CurrentScript().options.disk or top.disk, batch=CurrentScript().options.batch or top.batch, local=CurrentScript().options.local or top.local)
def __init__(self, function=None, force=False, import_builtins=True, output_directory=None, execute_dag=False, engine_wrapper=None, engine_arguments=None, args=[]): self.function = function self.arguments = args self.force = force # Ignore warnings self.import_builtins = True # Load built-ins if output_directory is None: self.output_directory = os.curdir # Where to create artifacts else: self.output_directory = output_directory self.start_time = time.time() # Record beginning of compiling self.options = Options() self.nested_abstractions = False self.inline_tasks = 1 self.execute_dag = execute_dag self.globals = {} self.engine_wrapper = engine_wrapper self.engine_arguments = engine_arguments self.include_symbols = False debug(D_SCRIPT, 'force = {0}'.format(self.force)) debug(D_SCRIPT, 'import_builtins = {0}'.format(self.import_builtins)) debug(D_SCRIPT, 'output_directory = {0}'.format(self.output_directory)) debug(D_SCRIPT, 'start_time = {0}'.format(self.start_time)) debug(D_SCRIPT, 'options = {0}'.format(self.options)) debug(D_SCRIPT, 'nested_abstractions = {0}'.format(self.nested_abstractions)) debug(D_SCRIPT, 'inline_tasks = {0}'.format(self.inline_tasks)) debug(D_SCRIPT, 'execute_dag = {0}'.format(self.execute_dag)) debug(D_SCRIPT, 'engine_wrapper = {0}'.format(self.engine_wrapper)) debug(D_SCRIPT, 'engine_arguments = {0}'.format(self.engine_arguments))
def __init__(self, function, inputs=None, outputs=None, includes=None, native=False, group=None, collect=False, local=False): # Must set id before we call Dataset.__init__ due to debugging # statement in said function. self.id = next(self.Counter) self.function = function self.inputs = inputs self.outputs = outputs or '{stash}' self.includes = includes self.native = native self.group = group or 0 self.local = local Dataset.__init__(self) if collect: self.collect = parse_input_list(self.inputs) else: self.collect = None self.options = Options(local=self.local, collect=self.collect) self.nest.futures.append((self, False)) debug(D_ABSTRACTION, 'Registered Abstraction {0} with {1}'.format(self, self.nest))
def __init__(self, args): self.path = None self.force = False # Ignore warnings self.import_builtins = True # Load built-ins self.output_directory = os.curdir # Where to create artifacts self.start_time = time.time() # Record beginning of compiling self.options = Options() self.nested_abstractions = False self.inline_tasks = 1 self.execute_dag = False self.globals = {} self.engine_wrapper = None self.engine_arguments = None self.include_symbols = False self.normalize_paths = True args = collections.deque(args) while args: arg = args.popleft() try: if arg.startswith('-'): self.SCRIPT_OPTIONS_TABLE[arg](self, args) else: self.path = arg self.arguments = list(args) args.clear() except (IndexError, KeyError): fatal(D_SCRIPT, 'invalid command line option: {0}'.format(arg)) if self.normalize_paths: self.output_directory = os.path.abspath(self.output_directory) debug(D_SCRIPT, 'path = {0}'.format(self.path)) debug(D_SCRIPT, 'force = {0}'.format(self.force)) debug(D_SCRIPT, 'import_builtins = {0}'.format(self.import_builtins)) debug(D_SCRIPT, 'output_directory = {0}'.format(self.output_directory)) debug(D_SCRIPT, 'start_time = {0}'.format(self.start_time)) debug(D_SCRIPT, 'options = {0}'.format(self.options)) debug(D_SCRIPT, 'nested_abstractions = {0}'.format(self.nested_abstractions)) debug(D_SCRIPT, 'inline_tasks = {0}'.format(self.inline_tasks)) debug(D_SCRIPT, 'execute_dag = {0}'.format(self.execute_dag)) debug(D_SCRIPT, 'engine_wrapper = {0}'.format(self.engine_wrapper)) debug(D_SCRIPT, 'engine_arguments = {0}'.format(self.engine_arguments)) debug(D_SCRIPT, 'normalize_paths = {0}'.format(self.normalize_paths)) if self.path is None: self.show_usage()
def _generate(self): with self: debug(D_ABSTRACTION, 'Generating Abstraction {0}'.format(self)) function = parse_function(self.function) inputs = parse_input_list(self.inputs) outputs = parse_output_list(self.outputs, inputs) includes = parse_input_list(self.includes) for i, o in zip(inputs, outputs): with Options(local=self.options.local, collect=[i] if self.collect else None): yield function(i, o, None, includes)
def _generate(self): with self: debug(D_ABSTRACTION, 'Generating Abstraction {0}'.format(self)) mapper = parse_function(self.mapper, PythonMapper) inputs = parse_input_list(self.inputs) includes = parse_input_list(self.includes) output = self.outputs nest = CurrentNest() for map_input in groups(inputs, self.group): map_output = next(nest.stash) with Options(local=self.options.local, collect=map_input if self.collect else None): yield mapper(map_input, map_output, includes)
def _generate(self): with self: debug(D_ABSTRACTION, 'Generating Abstraction {0}'.format(self)) function = parse_function(self.function) includes = parse_input_list(self.includes) # First format inputs and figure out the number of iteration to perform group_size = 0 inputs = [] if isinstance(self.inputs, list): # If inputs is a matrix if isinstance(self.inputs[0], list): for i, ingroup in enumerate(self.inputs): inputs.append(parse_input_list(ingroup)) if group_size == 0: group_size = len(ingroup) if len(ingroup) != group_size: raise IOError( "Iteration group size are different between inputs!" ) # If inputs is a simple list else: group_size = len(self.inputs) inputs = parse_input_list(self.inputs) # If inputs is a string else: group_size = 1 inputs = parse_input_list(self.inputs) for iter in range(group_size): iteration_inputs = [] if isinstance(inputs[0], list): for i, input in enumerate(inputs): iteration_inputs.append(input[iter]) else: iteration_inputs.append(inputs[iter]) input_pattern = self._longestCommonSubstr( list( map(os.path.basename, list(map(str, iteration_inputs))))) iteration_outputs = [] if isinstance(self.outputs, list): # If outputs is a matrix if isinstance(self.outputs[0], list): for i, outgroup in enumerate(self.outputs): iteration_outputs.append(outgroup[iter]) # If inputs is a simple list and a motif table elif isinstance(self.outputs[0], str) and '{' in self.outputs[0]: for motif in self.outputs: iteration_outputs.extend( parse_output_list(motif, input_pattern)) # If a simple string table elif isinstance(self.outputs[0], str): iteration_outputs = parse_output_list( self.outputs[iter], input_pattern) # If inputs is a string else: iteration_outputs = parse_output_list( self.outputs, input_pattern) with Options(local=self.options.local): yield function(iteration_inputs, iteration_outputs, self.arguments, includes)