Exemple #1
0
    def test_bounds_and_initial_points(self):
        np.random.seed(13)

        bounds = {'x': np.array([[-10., 11.0], [-20.0, 1.0]])}
        desvars = {'x': np.array([0., 0.25])}
        model_low = simple_2D_low_model(desvars)
        model_high = simple_2D_high_model(desvars)
        method_instance = BaseMethod(model_low, model_high, bounds, disp=False)

        init_points = np.array([[6.33175062, -15.01163438],
                                [7.30984919, 0.28073316],
                                [10.42462339, -10.4775658],
                                [2.78989172, -3.71394319],
                                [3.47388024, -4.83761718]])

        np.testing.assert_allclose(method_instance.design_vectors, init_points)

        np.random.seed(13)

        method_instance = BaseMethod(model_low,
                                     model_high,
                                     bounds,
                                     disp=False,
                                     num_initial_points=3)

        np.testing.assert_allclose(method_instance.design_vectors,
                                   init_points[:3, :])
Exemple #2
0
    def test_set_initial_point(self):
        np.random.seed(13)

        bounds = {'x': np.array([[0.0, 1.0], [0.0, 1.0]])}
        desvars = {'x': np.array([0., 0.25])}
        model_low = simple_2D_low_model(desvars)
        model_high = simple_2D_high_model(desvars)
        trust_region = BaseMethod(model_low, model_high, bounds, disp=False)

        trust_region.add_objective('y')
        trust_region.set_initial_point([0.5, 0.5])

        np.testing.assert_allclose(trust_region.design_vectors[-1, :],
                                   [0.5, 0.5])
Exemple #3
0
 def test_optimization(self):
     np.random.seed(13)
     
     bounds = {'x' : np.array([[0.0, 1.0], [0.0, 1.0]])}
     desvars = {'x' : np.array([0., 0.25])}
     model_low = simple_2D_low_model(desvars)
     model_high = simple_2D_high_model(desvars)
     trust_region = SimpleTrustRegion(model_low, model_high, bounds, disp=False)
     
     trust_region.add_objective('y')
     
     results = trust_region.optimize()
     
     np.testing.assert_allclose(results['optimal_design'], [0., 0.333], atol=1e-3)
Exemple #4
0
    def test_approximation(self):
        np.random.seed(13)

        bounds = {'x': np.array([[0.0, 1.0], [0.0, 1.0]])}
        desvars = {'x': np.array([0., 0.25])}
        model_low = simple_2D_low_model(desvars)
        model_high = simple_2D_high_model(desvars)
        method_instance = BaseMethod(model_low, model_high, bounds, disp=False)

        method_instance.add_objective('y')
        method_instance.construct_approximations()

        func = method_instance.approximation_functions['y']

        flattened_desvars = model_low.flatten_desvars(desvars)
        np.testing.assert_allclose(func(flattened_desvars), -5.33064616)
    def test_constrained_optimization(self):
        np.random.seed(13)

        bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])}
        desvars = {"x": np.array([0.0, 0.25])}
        model_low = simple_2D_low_model(desvars)
        model_high = simple_2D_high_model(desvars)
        trust_region = SimpleTrustRegion(model_low,
                                         model_high,
                                         bounds,
                                         num_initial_points=10,
                                         disp=False)

        trust_region.add_objective("y")
        trust_region.add_constraint("con", equals=0.0)

        results = trust_region.optimize(plot=False, num_iterations=10)

        np.testing.assert_allclose(results["optimal_design"], [0.0, 0.10987],
                                   atol=1e-3)
        np.testing.assert_allclose(results["outputs"]["con"], 0.0, atol=1e-5)
import numpy as np
from weis.multifidelity.models.testbed_components import simple_2D_high_model, simple_2D_low_model
from weis.multifidelity.methods.trust_region import SimpleTrustRegion

# Following Algo 2.1 from Andrew March's dissertation
np.random.seed(13)

bounds = {'x': np.array([[0.0, 1.0], [0.0, 1.0]])}
desvars = {'x': np.array([0., 0.25])}
model_low = simple_2D_low_model(desvars)
model_high = simple_2D_high_model(desvars)
trust_region = SimpleTrustRegion(model_low, model_high, bounds)

trust_region.add_objective('y')

trust_region.set_initial_point(desvars['x'])

trust_region.optimize()
Exemple #7
0
n_dims = 2
num_initial_points = 4

x_init = np.random.rand(num_initial_points, n_dims)
x = x_init.copy()
print()
print(x_init)

list_of_desvars = []
for i in range(num_initial_points):
    desvars = OrderedDict()
    desvars['x'] = x[i, :]
    list_of_desvars.append(desvars)

low = simple_2D_low_model(desvars, 'low_2D_results.pkl')
high = simple_2D_high_model(desvars, 'high_2D_results.pkl')

lofi_function = low.run_vec
hifi_function = high.run_vec

for i in range(21):
    y_low = lofi_function(list_of_desvars)
    y_high = hifi_function(list_of_desvars)

    # Construct RBF interpolater for error function
    differences = y_high - y_low
    
    input_arrays = np.split(x, x.shape[1], axis=1)
    
    input_arrays = [x.flatten() for x in input_arrays]