Exemple #1
0
def createAttributes(featureVector):
  numFeatures = len(featureVector)
  attributes = [Attribute(str(i) + " numeric") for i in range(numFeatures)]
  attributes.append(Attribute("class", ArrayList(["true", "false"])))
  instances = Instances("tests", ArrayList(attributes), 1)
  instances.setClassIndex(len(attributes) -1)
  return ArrayList(attributes)
def readFeature(num_features,type,select_feature,numtrees):
    #filename1=resultFileTest
    #filename2=resultFileTest2
    filename1=resultFile+'_'+type+'_'+num_features+'_'+select_feature+'_train.csv'
    filename2=resultFile+'_'+type+'_'+num_features+'_'+select_feature+'_test.csv'
    #print filename1
    loader=CSVLoader()
    loader.setSource(File(filename1))
    data=loader.getDataSet()
    #print data.numAttributes()    
    
    data.setClassIndex(data.numAttributes()-1)

    rf=RF()
    rf.setNumTrees(numtrees)
    
    rf.buildClassifier(data)
   
    #print rf
    loader.setSource(File(filename2))
    

    test_data=Instances(loader.getDataSet())
    
    test_data.setClassIndex(test_data.numAttributes()-1)

    
    ''' num=test_data.numInstances()

    
    print num
   
    for i in xrange(num):

        r1=rf.distributionForInstance(test_data.instance(i))
  
        r2=rf.classifyInstance(test_data.instance(i))

        ptrixrint r1 
          
           print r2'''
    buffer = StringBuffer()  # buffer for the predictions
    output=PlainText()
    output.setHeader(test_data)
    output.setBuffer(buffer)
    
    attRange = Range()  # attributes to output
    outputDistribution = Boolean(True)
    evaluator=Evaluation(data)
    evaluator.evaluateModel(rf,test_data,[output,attRange,outputDistribution])
    #print evaluator.evaluateModel(RF(),['-t',filename1,'-T',filename2,'-I',str(numtrees)])
    #evaluator1=Evaluation(test_data)
    print evaluator.toSummaryString()
    print evaluator.toClassDetailsString()
    print evaluator.toMatrixString()
    return [evaluator.precision(1),evaluator.recall(1),evaluator.fMeasure(1),evaluator.matthewsCorrelationCoefficient(1),evaluator.numTruePositives(1),evaluator.numFalsePositives(1),evaluator.numTrueNegatives(1),evaluator.numFalseNegatives(1),evaluator.areaUnderROC(1)]
    def load_arff(self, arff):
        file = FileReader(arff)

        #fis = FileInputStream(arff)
        #file = InputStreamReader(fis, "UTF-8");

        #fr = FileReader(arff)
        #file = BufferedReader(fr)
        
        data = Instances(file)
        data.setClassIndex(data.numAttributes() - 1)
        return data
Exemple #4
0
def createTrainingInstances(matchingExamples, mismatchingExamples):
  """ Expects the matchingExamples to be a list of feature lists,
      i.e. the feature vector is a list. """
  numFeatures = len(matchingExamples[0])
  attributes = [Attribute(str(i) + " numeric") for i in range(numFeatures)]
  attributes.append(Attribute("class", ArrayList(["true", "false"])))
  trainingData = Instances("matches", ArrayList(attributes), len(matchingExamples) + len(mismatchingExamples))
  trainingData.setClassIndex(len(attributes) -1) # the last index
  for f in matchingExamples:
    trainingData.add(DenseInstance(1.0, f + [1])) # 1 is True
  for f in mismatchingExamples:
    trainingData.add(DenseInstance(1.0, f + [0])) # 0 is False
  return trainingData
Exemple #5
0
def classify(img, classifier, class_names, ops=None, distribution_class_index=-1):
  """ img: a 2D RandomAccessibleInterval.
      classifier: a WEKA Classifier instance, like SMO or FastRandomForest, etc. Any.
                  If it's a string, interprets it as a file path and attempts to deserialize
                  a previously saved trained classifier.
      class_names: the list of names of each class to learn.
      ops: the filter bank of ImgMath ops for the img.
      distribution_class_index: defaults to -1, meaning return the class index for each pixel.
                                When larger than -1, it's interpreted as a class index, and
                                returns instead the floating-point value of each pixel in
                                the distribution of that particular class index. """
  if type(classifier) == str:
    classifier = SerializationHelper.read(classifier)

  ops = ops if ops else filterBank(img)
  
  attributes = ArrayList()
  for i in xrange(len(ops)):
    attributes.add(Attribute("attr-%i" % i))
  #for name in classifier.attributeNames()[0][1]:
  #  attributes.add(Attribute(name))
  attributes.add(Attribute("class", class_names))
  
  info = Instances("structure", attributes, 1)
  info.setClassIndex(len(attributes) -1)

  opImgs = [compute(op).into(ArrayImgs.floats([img.dimension(0), img.dimension(1)])) for op in ops]
  cs_opImgs = Views.collapse(Views.stack(opImgs))

  result = ArrayImgs.floats([img.dimension(0), img.dimension(1)])
  cr = result.cursor()
  cop = Views.iterable(cs_opImgs).cursor()

  while cr.hasNext():
    tc = cop.next()
    vector = array((tc.get(i).getRealDouble() for i in xrange(len(opImgs))), 'd')
    vector += array([0], 'd')
    di = DenseInstance(1.0, vector)
    di.setDataset(info) # the list of attributes
    if distribution_class_index > -1:
      cr.next().setReal(classifier.distributionForInstance(di)[distribution_class_index])
    else:
      cr.next().setReal(classifier.classifyInstance(di))

  return result
Exemple #6
0
def classify(classifier, matches):
  """ Expects one vector numFeatures length """
  """ returns a list of [result, distributionforinstance match]"""
  attributes = createAttributes(matches[0])
  instances = Instances("tests", attributes, 1)
  instances.setClassIndex(len(attributes) -1)
  distribution=[] ###
  for match in matches:
    instances.add(DenseInstance(1.0, match + [0]))
  for i in range(len(matches)):
    result=classifier.classifyInstance(instances.instance(i))
    dist=(classifier.distributionForInstance(instances.instance(i)))
    results=[result, dist[1]]
  return results


  


  
def build_instances(state,dataset):
    class_attributes = ["Sunny", "Fog", "Rain", "Snow", "Hail", "Thunder", "Tornado"]
    header = ["state","lat", "lon", "day","temp","dewp","weather"]

    #build attributes based on the header and types
    attributes = []
    for h in header[:-1]:
        attributes.append(Attribute(h))

    #add the classification attribute
    classification_vector = FastVector(len(class_attributes))
    for c in class_attributes:
        classification_vector.addElement(c)
    attributes.append(Attribute("toClassify", classification_vector))

    fvWekaAttributes = FastVector(len(dataset[0]))

    for a in attributes:
        fvWekaAttributes.addElement(a)
    
    training_set = Instances("C4.5Set", fvWekaAttributes, len(dataset))
    training_set.setClassIndex(len(header)-1)

    for d in dataset:
        inst = Instance(len(d))
        for i in range(len(d)-1):
            try:
                inst.setValue(fvWekaAttributes.elementAt(i), float(d[i]))
            except:
                pass
                #print "failed on", i, d[i], d[i].__class__
        inst.setValue(fvWekaAttributes.elementAt(len(d)-1), d[-1])
        
        training_set.add(inst)


    j48 = J48()
    j48.buildClassifier(training_set)
    return state,parse_tree(str(j48))
Exemple #8
0
def createTrainingData(img, samples, class_names, n_samples=0, ops=None):
  """ img: a 2D RandomAccessibleInterval.
      samples: a sequence of long[] (or int numeric sequence or Localizable) and class_index pairs; can be a generator.
      n_samples: optional, the number of samples (in case samples is e.g. a generator).
      class_names: a list of class names, as many as different class_index.
      ops: optional, the sequence of ImgMath ops to apply to the img, defaults to filterBank(img)

      return an instance of WEKA Instances
  """
  ops = ops if ops else filterBank(img)

  if 0 == n_samples:
    n_samples = len(samples)
  
  # Define a WEKA Attribute for each feature (one for op in the filter bank, plus the class)
  attribute_names = ["attr-%i" % (i+1) for i in xrange(len(ops))]
  attributes = ArrayList()
  for name in attribute_names:
    attributes.add(Attribute(name))
  # Add an attribute at the end for the classification classes
  attributes.add(Attribute("class", class_names))

  # Create the training data structure
  training_data = Instances("training", attributes, n_samples)
  training_data.setClassIndex(len(attributes) -1)

  opImgs = [compute(op).into(ArrayImgs.floats([img.dimension(0), img.dimension(1)])) for op in ops]
  ra = Views.collapse(Views.stack(opImgs)).randomAccess()

  for position, class_index in samples:
    ra.setPosition(position)
    tc = ra.get()
    vector = array((tc.get(i).getRealDouble() for i in xrange(len(opImgs))), 'd')
    vector += array([class_index], 'd')
    training_data.add(DenseInstance(1.0, vector))

  return training_data
def runClassifierAlgo(algo, training_filename, test_filename, do_model, do_eval, do_predict):
    """ Run classifier algorithm <algo> on training data in <training_filename> to build a model
        then run in on data in <test_filename> (equivalent of WEKA "Supplied test set") """
    training_file = FileReader(training_filename)
    training_data = Instances(training_file)
    test_file = FileReader(test_filename)
    test_data = Instances(test_file)

    # set the class Index - the index of the dependent variable
    training_data.setClassIndex(class_index)
    test_data.setClassIndex(class_index)

    # create the model
    algo.buildClassifier(training_data)

    evaluation = None
    # only a trained classifier can be evaluated
    if do_eval or do_predict:
        evaluation = Evaluation(test_data)
        buffer = StringBuffer()  # buffer for the predictions
        attRange = Range()  # no additional attributes output
        outputDistribution = Boolean(False)  # we don't want distribution
        evaluation.evaluateModel(algo, test_data, [buffer, attRange, outputDistribution])

    if verbose:
        if do_model:
            print "--> Generated model:\n"
            print algo.toString()
        if do_eval:
            print "--> Evaluation:\n"
            print evaluation.toSummaryString()
        if do_predict:
            print "--> Predictions:\n"
            print buffer

    return {"model": str(algo), "eval": str(evaluation.toSummaryString()), "predict": str(buffer)}
Exemple #10
0
      weka.classifiers.Evaluation class)

"""

# check commandline parameters
if (not (len(sys.argv) == 2)):
    print "Usage: UsingJ48Ext.py <ARFF-file>"
    sys.exit()

# load data file
print "Loading data..."
file = FileReader(sys.argv[1])
data = Instances(file)

# set the class Index - the index of the dependent variable
data.setClassIndex(data.numAttributes() - 1)

# create the model
evaluation = Evaluation(data)
output = PlainText()  # plain text output for predictions
output.setHeader(data)
buffer = StringBuffer()  # buffer to use
output.setBuffer(buffer)
attRange = Range()  # no additional attributes output
outputDistribution = Boolean(False)  # we don't want distribution
j48 = J48()
j48.buildClassifier(data)  # only a trained classifier can be evaluated
evaluation.evaluateModel(j48, data, [output, attRange, outputDistribution])

# print out the built model
print "--> Generated model:\n"
    sys.exit()
crossvalidate = sys.argv[2]
rand = Random()              # seed from the system time

# load properties
p = Properties()
p.load(open('./ml.properties'))

# load data file
print "Loading data..."
trainfile = FileReader(sys.argv[1] + "-train.arff")
print "Loading " + sys.argv[1] + "-train.arff"
testfile = FileReader(sys.argv[1] + "-test.arff")
print "Loading " + sys.argv[1] + "-test.arff"
fulltrainset = Instances(trainfile)
fulltrainset.setClassIndex(fulltrainset.numAttributes() - 1)
testset = Instances(testfile)
testset.setClassIndex(testset.numAttributes() - 1)

# open output files
bufsize=0
classifiername = str(os.path.splitext(os.path.basename(__file__))[0])
dataname = str(os.path.splitext(os.path.basename(sys.argv[1]))[0])
datafilelimit = "data/plot/" + classifiername + "_" + dataname + crossvalidate + "_instances.csv"
filelimit=open(datafilelimit, 'w', bufsize)
filelimit.write("instances,pctincorrecttest,pctincorrecttrain\n")
logfile = "logs/" + classifiername + "_" + dataname + crossvalidate + ".log"
log=open(logfile, 'w', bufsize) # open general log file

for num in range(int(p['j48.initial']),fulltrainset.numInstances(),(fulltrainset.numInstances() / int(p['j48.numdatapoints']))):
   filelimit.write(str(num))
# load data file
print "Loading data..."
datafile = FileReader(sys.argv[1])
data = Instances(datafile)
rand = Random()              # seed from the system time
data.randomize(rand)         # randomize data with number generator

# open output files
bufsize=0
dataname = str(os.path.splitext(os.path.basename(sys.argv[1]))[0])

# loop for different amounts of data with fixed test set
datasize = data.numInstances()
limit = (datasize*2)/3   # loop until we use 2/3 data as training set
testset = Instances(data,limit,datasize-limit)   # create training set using the last 1/3 of data
testset.setClassIndex(testset.numAttributes() - 1)

saver = ArffSaver()
saver.setInstances(testset)
testsetfile = "./data/split/" + dataname + "-" + "test.arff"
file = File(testsetfile)
saver.setFile(file)
saver.writeBatch()

trainset = Instances(data,0,limit)   # create training set
saver = ArffSaver()
saver.setInstances(trainset)
trainsetfile = "./data/split/" + dataname + "-" + "train.arff"
file = File(trainsetfile)
saver.setFile(file)
saver.writeBatch()
def runClassifierAlgo(algo, class_index, training_filename, test_filename, do_model, do_eval, do_predict):
    """ If <test_filename>
            Run classifier algorithm <algo> on training data in <training_filename> to build a model
            then test on data in <test_filename> (equivalent of Weka "Supplied test set") 
        else
            do 10 fold CV lassifier algorithm <algo> on data in <training_filename>
        
        <class_index> is the column containing the dependent variable 
        
        http://weka.wikispaces.com/Generating+classifier+evaluation+output+manually
        http://weka.sourceforge.net/doc.dev/weka/classifiers/Evaluation.html
    """
    print ' runClassifierAlgo: training_filename= ', training_filename, ', test_filename=', test_filename
    misc.checkExists(training_filename)

    training_file = FileReader(training_filename)
    training_data = Instances(training_file)
    if test_filename:
        test_file = FileReader(test_filename)
        test_data = Instances(test_file)
    else:
        test_data = training_data

   # set the class Index - the index of the dependent variable
    training_data.setClassIndex(class_index)
    test_data.setClassIndex(class_index)

    # create the model
    if test_filename:
        algo.buildClassifier(training_data)

    evaluation = None
    # only a trained classifier can be evaluated
    if do_eval or do_predict:
        evaluation = Evaluation(test_data)
        buffer = StringBuffer()             # buffer for the predictions
        attRange = Range()                  # no additional attributes output
        outputDistribution = Boolean(False) # we don't want distribution
        if test_filename:
            evaluation.evaluateModel(algo, test_data, [buffer, attRange, outputDistribution])
        else:
           # evaluation.evaluateModel(algo, [String('-t ' + training_filename), String('-c 1')])
           # print evaluation.toSummaryString()
            rand = Random(1)
            evaluation.crossValidateModel(algo, training_data, 4, rand)
            if False:
                print 'percentage correct =', evaluation.pctCorrect()
                print 'area under ROC =', evaluation.areaUnderROC(class_index)
                confusion_matrix = evaluation.confusionMatrix()
                for l in confusion_matrix:
                    print '** ', ','.join('%2d'%int(x) for x in l)

    if verbose:
        if do_model:
            print '--> Generated model:\n'
            print algo.toString()
        if do_eval:
            print '--> Evaluation:\n'
            print evaluation.toSummaryString()
        if do_predict:
            print '--> Predictions:\n'
            print buffer

    return {'model':str(algo), 'eval':str(evaluation.toSummaryString()), 'predict':str(buffer) }
attributes = ArrayList()
for name in attribute_names:
    attributes.add(Attribute(name))
# Add an attribute at the end for the classification classes
attributes.add(
    Attribute("class",
              ["membrane", "mit-boundary", "mit-inside", "cytoplasm"]))

# Create the training data structure
# which consists of 16 samples for each membrane training image rotation
# and 4 samples for each mitochondrial boundary image rotation
# and times 2 to then add examples of the other, non-membrane class
training_data = Instances(
    "training", attributes,
    (len(synth_imgs_membrane) * 16 + len(synth_imgs_mit_boundary) * 4) * 2)
training_data.setClassIndex(len(attributes) - 1)


def populateInstances(instances, synth_imgs, class_index, mins, maxs):
    # Populate the training data: create the filter bank for each feature image
    # by reading values from the interval defined by mins and maxs
    target = ArrayImgs.floats([width, height])
    interval = FinalInterval(mins, maxs)
    n_samples = Intervals.numElements(interval)
    for img in synth_imgs:
        vectors = [zeros(len(attributes), 'd') for _ in xrange(n_samples)]
        for k, op in enumerate(filterBank(img, sumType=DoubleType())):
            imgOp = compute(op).into(target)
            for i, v in enumerate(Views.interval(imgOp, interval)):
                vectors[i][k] = v.getRealDouble()
        for vector in vectors:
Exemple #15
0
    sys.exit()
crossvalidate = sys.argv[2]
rand = Random()  # seed from the system time

# load properties
p = Properties()
p.load(open('./ml.properties'))

# load data file
print "Loading data..."
trainfile = FileReader(sys.argv[1] + "-train.arff")
print "Loading " + sys.argv[1] + "-train.arff"
testfile = FileReader(sys.argv[1] + "-test.arff")
print "Loading " + sys.argv[1] + "-test.arff"
fulltrainset = Instances(trainfile)
fulltrainset.setClassIndex(fulltrainset.numAttributes() - 1)
testset = Instances(testfile)
testset.setClassIndex(testset.numAttributes() - 1)

# open output files
bufsize = 0
classifiername = str(os.path.splitext(os.path.basename(__file__))[0])
dataname = str(os.path.splitext(os.path.basename(sys.argv[1]))[0])
datafilelimit = "data/plot/" + classifiername + "_" + dataname + crossvalidate + "_instances.csv"
filelimit = open(datafilelimit, 'w', bufsize)
filelimit.write(
    "instances,lineartest,lineartrain,polytest,polytrain,radialtest,radialtrain,sigmoidtest,sigmoidtrain\n"
)
logfile = "logs/" + classifiername + "_" + dataname + crossvalidate + ".log"
log = open(logfile, 'w', bufsize)  # open general log file
Exemple #16
0
      weka.classifiers.Evaluation class)

"""

# check commandline parameters
if (not (len(sys.argv) == 2)):
    print "Usage: UsingJ48Ext.py <ARFF-file>"
    sys.exit()

# load data file
print "Loading data..."
file = FileReader(sys.argv[1])
data = Instances(file)

# set the class Index - the index of the dependent variable
data.setClassIndex(data.numAttributes() - 1)

# create the model
evaluation = Evaluation(data)
buffer = StringBuffer()  # buffer for the predictions
attRange = Range()  # no additional attributes output
outputDistribution = Boolean(False)  # we don't want distribution
j48 = J48()
j48.buildClassifier(data)  # only a trained classifier can be evaluated
evaluation.evaluateModel(j48, data, [buffer, attRange, outputDistribution])

# print out the built model
print "--> Generated model:\n"
print j48

print "--> Evaluation:\n"
print "Loading data..."
datafile = FileReader(sys.argv[1])
data = Instances(datafile)
rand = Random()  # seed from the system time
data.randomize(rand)  # randomize data with number generator

# open output files
bufsize = 0
dataname = str(os.path.splitext(os.path.basename(sys.argv[1]))[0])

# loop for different amounts of data with fixed test set
datasize = data.numInstances()
limit = (datasize * 2) / 3  # loop until we use 2/3 data as training set
testset = Instances(data, limit, datasize -
                    limit)  # create training set using the last 1/3 of data
testset.setClassIndex(testset.numAttributes() - 1)

saver = ArffSaver()
saver.setInstances(testset)
testsetfile = "./data/split/" + dataname + "-" + "test.arff"
file = File(testsetfile)
saver.setFile(file)
saver.writeBatch()

trainset = Instances(data, 0, limit)  # create training set
saver = ArffSaver()
saver.setInstances(trainset)
trainsetfile = "./data/split/" + dataname + "-" + "train.arff"
file = File(trainsetfile)
saver.setFile(file)
saver.writeBatch()