Exemple #1
0
class Net(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args

        self.wemb = Wemb(args)
        self.drop = nn.Dropout(args.dropout)
        odim = len(args.tag_stoi)
        if args.ner:
            self.crf = CRF(args.tag_stoi)
            odim = len(args.tag_stoi) + 2
        if not args.lstm:
            self.ffn = nn.Sequential(nn.Linear(300, 400), nn.ReLU(),
                                     nn.Dropout(args.dropout))
        else:
            self.lstm = nn.LSTM(input_size=300,
                                hidden_size=200,
                                num_layers=2,
                                bias=True,
                                batch_first=True,
                                dropout=args.dropout,
                                bidirectional=True)
        self.hid2tag = nn.Linear(400, odim)

    def forward(self, batch):
        mask = pad_sequence([torch.ones(len(x)) for x in batch], True,
                            0).byte().cuda()
        if self.args.fix:
            with torch.no_grad():
                x = self.wemb.eval()(batch)
        else:
            x = self.wemb(batch)
        x = self.drop(x)
        if not self.args.lstm:
            x = self.ffn(x)
        else:
            x = Lstm(self.lstm, x, mask.sum(-1))
        x = self.hid2tag(x)
        return x, mask

    def train_batch(self, batch, tags):
        x, mask = self.forward(batch)
        tag_ids = pad_sequence([
            torch.LongTensor([self.args.tag_stoi[t] for t in s]) for s in tags
        ], True, self.args.tag_stoi["<pad>"]).cuda()
        if not self.args.ner:
            loss = nn.functional.cross_entropy(x[mask], tag_ids[mask])
        else:
            loss = self.crf.neg_log_likelihood_loss(x, mask, tag_ids)
        return loss

    def test_batch(self, batch):
        x, mask = self.forward(batch)
        if not self.args.ner:
            path = x.max(-1)[1]
        else:
            _, path = self.crf._viterbi_decode(x, mask)
        path = [p[m].tolist() for p, m in zip(path, mask)]
        tags = [[self.args.tag_itos[i] for i in s] for s in path]
        return tags
Exemple #2
0
    def __init__(self, args):
        super().__init__()
        self.args = args

        self.wemb = Wemb(args)
        self.drop = nn.Dropout(args.dropout)
        odim = len(args.tag_stoi)
        if args.ner:
            self.crf = CRF(args.tag_stoi)
            odim = len(args.tag_stoi) + 2
        if not args.lstm:
            self.ffn = nn.Sequential(nn.Linear(300, 400), nn.ReLU(),
                                     nn.Dropout(args.dropout))
        else:
            self.lstm = nn.LSTM(input_size=300,
                                hidden_size=200,
                                num_layers=2,
                                bias=True,
                                batch_first=True,
                                dropout=args.dropout,
                                bidirectional=True)
        self.hid2tag = nn.Linear(400, odim)
Exemple #3
0
for K in args.Ks.split(","):
    _, _, t = torch.load(f"{args.dir}/sst_{K}.{args.seed}.pt")
    tess.append(t)

import sys
sys.path.append("../util")
from wordemb import wordemb
args.wtoi, args.wvec, args.w2f = wordemb(args)
args.tsk_words = sorted(
    set(chain([s.split() for s, t in tra + dev + tes + sum(tess, [])])))
args.qws = [w for w in args.tsk_words if w not in args.wtoi]
args.tra = []
import sys
sys.path.append(f"../lstm/_sim")
from wemb import Wemb
wemb = Wemb(args)
wtoi, wvec = wemb.wtoi_, wemb.wvec_
wtoi["<unk>"] = len(wvec)
wvec = torch.cat([wvec, torch.zeros(1, 300)])

from more_itertools import chunked
from tqdm import tqdm

import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence

from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
from transformers import BertForSequenceClassification

Exemple #4
0
    w for w in args.wtoi.keys() if args.f_min < args.w2f[w] < args.f_max
]
if len(word_qws) > int(args.n_tradev):
    word_qws = random.sample(word_qws, int(args.n_tradev))

qws = list(set((word_qws + card.ws + toefl_ws)))
N = args.n_dev
x = random.sample(word_qws, len(word_qws))
tra, dev = x[:-N], x[-N:]
# print("word_qws", len(word_qws), "qws", len(qws))

out = ""
best = 0

from wemb import Wemb
net = Wemb(args=args, qws=qws).cuda()
optim = torch.optim.Adam(params=net.parameters(), lr=args.lr)

for epoch in range(args.epoch):
    net.train()
    lstloss = []
    for ws in chunked(random.sample(tra, len(tra)), args.batch):
        loss = net.train_ws(ws=ws)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(net.parameters(), args.clip)
        optim.step()
        optim.zero_grad()
        lstloss.append(loss.item())

    net.eval()
    lstloss = []
Exemple #5
0
def main(args):
    stopwords = set(nltk.corpus.stopwords.words("english")) | set(
        string.punctuation)

    args.wtoi, args.wvec, args.w2f = wordemb(args)

    with open(args.corpus_vocab_file, "r") as h:
        x = [r.split(" ") for r in h.read().rstrip().split("\n")]
    w2f_cp = {w: int(f) for w, f in x}

    qws = [
        w for w, f in args.w2f.items()
        if w not in stopwords and w in w2f_cp and args.f_min < f < args.f_max
    ]
    qws = random.sample(qws, args.n_tradev)
    # print(f"qws {len(qws)}")

    wctx = get_ctxs(args, qws, maxctx=args.maxctx, wnd=args.ctxwnd)

    N = args.n_dev
    x = random.sample(wctx, len(wctx))
    tra, dev = x[:-N], x[-N:]
    print(f"tra {len(tra)}, dev {len(dev)}")

    args.qws = list(set([w for w, _ in wctx]))
    net = Wemb(args).cuda()
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)

    best = 0
    for epoch in range(args.epoch):
        net.train()
        lstloss = []
        x = random.sample(tra, len(tra))
        for batch in chunked(x, args.batch):
            loss = net.train_batch(batch)
            loss.backward()
            torch.nn.utils.clip_grad_norm_(net.parameters(), args.clip)
            optim.step()
            optim.zero_grad()
            lstloss.append(loss.item())

        net.eval()
        lstloss = []
        for batch in chunked(dev, args.batch):
            with torch.no_grad():
                loss = net.train_batch(batch)
            lstloss.append(loss.item())
        dev_loss = np.mean(lstloss)
        # print(dev_loss)

        if dev_loss > best:
            best = dev_loss
            # best_loss = f"epoch {epoch}: {dev_loss}"
            bestmodel = net.state_dict()
    # print(best_loss)
    torch.save(bestmodel.state_dict(), "model.pt")
Exemple #6
0
import sys
sys.path.append("../util")
from util import wordemb
args.wtoi, args.wvec, args.w2f = wordemb(args)

from rwcard import CARD
card = CARD(args=args)

from toefl import toefl
_toefl = toefl(vocab=args.wtoi, args=args)
toefl_ws = [l for l, r in _toefl]

qws = sorted(set((card.ws + toefl_ws)))

from wemb import Wemb
net = Wemb(args=args, qws=qws).cuda()
net.load_state_dict(saved_obj["state_dict"])

with torch.no_grad():
    es = net.pred(ws=card.ws).cpu().detach()
    m = torch.ByteTensor([w in args.wtoi for w in card.ws])
    es[m] = args.wvec[[args.wtoi[w] for w in card.ws if w in args.wtoi]]
    r, wivr, oovr, oovrate, sims = card.evaluate(es.tolist(), args.wtoi, ws=card.ws)

with torch.no_grad():
    cs = []
    for x in chunked(_toefl, 10000):
        bmis, btrg = zip(*x)
        bmis = list(bmis)
        with torch.no_grad():
            es = net.pred(ws=bmis).cpu().detach().numpy()