Exemple #1
0
        writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id))

    if distributed:
        assert (torch.cuda.is_available())
        # cuda model is required for nn.parallel.DistributedDataParallel
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(
            model, find_unused_parameters=True)
        device = torch.device("cuda")
    else:
        use_cuda = args.gpu >= 0 and torch.cuda.is_available()
        device = torch.device('cuda' if use_cuda else 'cpu')
        model = model.to(device)

    optimizer = optim.Adam(model.parameters(), **configs['optim_conf'])
    scheduler = WarmupLR(optimizer, **configs['scheduler_conf'])
    final_epoch = None
    configs['rank'] = args.rank
    configs['is_distributed'] = distributed
    configs['use_amp'] = args.use_amp
    if start_epoch == 0 and args.rank == 0:
        save_model_path = os.path.join(model_dir, 'init.pt')
        save_checkpoint(model, save_model_path)

    # Start training loop
    executor.step = step
    scheduler.set_step(step)
    # used for pytorch amp mixed precision training
    scaler = None
    if args.use_amp:
        scaler = torch.cuda.amp.GradScaler()
Exemple #2
0
def main():
    args = get_args()
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    # Set random seed
    torch.manual_seed(777)
    print(args)
    with open(args.config, 'r') as fin:
        configs = yaml.load(fin, Loader=yaml.FullLoader)
    if len(args.override_config) > 0:
        configs = override_config(configs, args.override_config)

    distributed = args.world_size > 1
    if distributed:
        logging.info('training on multiple gpus, this gpu {}'.format(args.gpu))
        dist.init_process_group(args.dist_backend,
                                init_method=args.init_method,
                                world_size=args.world_size,
                                rank=args.rank)

    symbol_table = read_symbol_table(args.symbol_table)

    train_conf = configs['dataset_conf']
    cv_conf = copy.deepcopy(train_conf)
    cv_conf['speed_perturb'] = False
    cv_conf['spec_aug'] = False
    cv_conf['shuffle'] = False

    cv_conf['apply_alaw_codec'] = False
    cv_conf['add_noise'] = False
    cv_conf['add_babble'] = False
    cv_conf['add_reverb'] = False
    cv_conf['apply_codec'] = False
    cv_conf['volume_perturb'] = False
    cv_conf['pitch_shift'] = False

    non_lang_syms = read_non_lang_symbols(args.non_lang_syms)

    train_dataset = Dataset(args.data_type, args.train_data, symbol_table,
                            train_conf, args.bpe_model, non_lang_syms, True)
    cv_dataset = Dataset(args.data_type,
                         args.cv_data,
                         symbol_table,
                         cv_conf,
                         args.bpe_model,
                         non_lang_syms,
                         partition=False)

    train_data_loader = DataLoader(train_dataset,
                                   batch_size=None,
                                   pin_memory=args.pin_memory,
                                   num_workers=args.num_workers,
                                   prefetch_factor=args.prefetch)
    cv_data_loader = DataLoader(cv_dataset,
                                batch_size=None,
                                pin_memory=args.pin_memory,
                                num_workers=args.num_workers,
                                prefetch_factor=args.prefetch)

    if 'fbank_conf' in configs['dataset_conf']:
        input_dim = configs['dataset_conf']['fbank_conf']['num_mel_bins']
    else:
        input_dim = configs['dataset_conf']['mfcc_conf']['num_mel_bins']
    vocab_size = len(symbol_table)

    # Save configs to model_dir/train.yaml for inference and export
    configs['input_dim'] = input_dim
    configs['output_dim'] = vocab_size
    configs['cmvn_file'] = args.cmvn
    configs['is_json_cmvn'] = True

    if args.rank == 0:
        saved_config_path = os.path.join(args.model_dir, 'train.yaml')
        with open(saved_config_path, 'w') as fout:
            data = yaml.dump(configs)
            fout.write(data)

    # Init asr model from configs
    model = init_asr_model(configs)
    if args.rank == 0:
        print(model)
    num_params = sum(p.numel() for p in model.parameters())
    print('the number of model params: {}'.format(num_params))
    # !!!IMPORTANT!!!
    # Try to export the model by script, if fails, we should refine
    # the code to satisfy the script export requirements
    if args.rank == 0:
        script_model = torch.jit.script(model)
        script_model.save(os.path.join(args.model_dir, 'init.zip'))
    executor = Executor()
    # If specify checkpoint, load some info from checkpoint
    if args.checkpoint is not None:
        infos = load_checkpoint(model, args.checkpoint)
    elif args.enc_init is not None:
        logging.info('load pretrained encoders: {}'.format(args.enc_init))
        infos = load_trained_modules(model, args)
    else:
        infos = {}
    start_epoch = infos.get('epoch', -1) + 1
    cv_loss = infos.get('cv_loss', 0.0)
    step = infos.get('step', -1)

    num_epochs = configs.get('max_epoch', 100)
    model_dir = args.model_dir
    writer = None
    if args.rank == 0:
        os.makedirs(model_dir, exist_ok=True)
        exp_id = os.path.basename(model_dir)
        writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id))

    if distributed:
        assert (torch.cuda.is_available())
        # cuda model is required for nn.parallel.DistributedDataParallel
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(
            model, find_unused_parameters=True)
        device = torch.device("cuda")
        if args.fp16_grad_sync:
            from torch.distributed.algorithms.ddp_comm_hooks import (
                default as comm_hooks,
            )
            model.register_comm_hook(
                state=None, hook=comm_hooks.fp16_compress_hook
            )
    else:
        use_cuda = args.gpu >= 0 and torch.cuda.is_available()
        device = torch.device('cuda' if use_cuda else 'cpu')
        model = model.to(device)
    if configs['optim'] == 'adam':
        print('optimizer is adam')
        optimizer = optim.Adam(model.parameters(), **configs['optim_conf'])
    elif configs['optim'] == 'sgd':
        print('optimizer is sgd')
        optimizer = optim.SGD(model.parameters(), **configs['optim_conf'])

    scheduler = WarmupLR(optimizer, **configs['scheduler_conf'])
    final_epoch = None
    configs['rank'] = args.rank
    configs['is_distributed'] = distributed
    configs['use_amp'] = args.use_amp
    if start_epoch == 0 and args.rank == 0:
        save_model_path = os.path.join(model_dir, 'init.pt')
        save_checkpoint(model, save_model_path)

    # Start training loop
    executor.step = step
    scheduler.set_step(step)
    # used for pytorch amp mixed precision training
    scaler = None
    if args.use_amp:
        scaler = torch.cuda.amp.GradScaler()

    for epoch in range(start_epoch, num_epochs):
        train_dataset.set_epoch(epoch)
        configs['epoch'] = epoch
        lr = optimizer.param_groups[0]['lr']
        logging.info('Epoch {} TRAIN info lr {}'.format(epoch, lr))
        executor.train(model, optimizer, scheduler, train_data_loader, device,
                       writer, configs, scaler)
        total_loss, total_loss_att, total_loss_ctc, num_seen_utts = executor.cv(
            model, cv_data_loader, device, configs)
        cv_loss = total_loss / num_seen_utts
        cv_loss_att = total_loss_att / num_seen_utts
        cv_loss_ctc = total_loss_ctc / num_seen_utts

        logging.info('Epoch {} CV info cv_loss {}'.format(epoch, cv_loss))
        if args.rank == 0:
            save_model_path = os.path.join(model_dir, '{}.pt'.format(epoch))
            save_checkpoint(
                model, save_model_path, {
                    'epoch': epoch,
                    'lr': lr,
                    'cv_loss': cv_loss,
                    'cv_loss_att': cv_loss_att,
                    'cv_loss_ctc': cv_loss_ctc,
                    'step': executor.step
                })
            writer.add_scalar('epoch/cv_loss', cv_loss, epoch)
            writer.add_scalar('epoch/cv_loss_att', cv_loss, epoch)
            writer.add_scalar('epoch/cv_loss_ctc', cv_loss, epoch)
            writer.add_scalar('epoch/lr', lr, epoch)
        final_epoch = epoch

    if final_epoch is not None and args.rank == 0:
        final_model_path = os.path.join(model_dir, 'final.pt')
        os.symlink('{}.pt'.format(final_epoch), final_model_path)
        writer.close()