Exemple #1
0
    def forward(self, x, boxes):
        """
        Arguments:
            x (Tensor): the mask logits
            boxes (list[BoxList]): bounding boxes that are used as
                reference, one for ech image

        Returns:
            results (list[BoxList]): one BoxList for each image, containing
                the extra field mask
        """
        mask_prob = x.sigmoid()

        # select masks coresponding to the predicted classes
        num_masks = x.shape[0]
        labels = [bbox.get_field("labels") for bbox in boxes]
        labels = torch.cat(labels)
        index = torch.arange(num_masks, device=labels.device)
        mask_prob = mask_prob[index, labels][:, None]

        boxes_per_image = [len(box) for box in boxes]
        mask_prob = mask_prob.split(boxes_per_image, dim=0)

        if self.masker:
            mask_prob = self.masker(mask_prob, boxes)

        results = []
        for prob, box in zip(mask_prob, boxes):
            bbox = BoxList(box.bbox, box.size, mode="xyxy")
            for field in box.fields():
                bbox.add_field(field, box.get_field(field))
            bbox.add_field("mask", prob)
            results.append(bbox)

        return results
    def __call__(self,
                 proposals,
                 source_score,
                 labels,
                 device,
                 return_targets=False):
        gt_boxes = torch.zeros((0, 4), dtype=torch.float, device=device)
        gt_classes = torch.zeros((0, 1), dtype=torch.long, device=device)
        gt_scores = torch.zeros((0, 1), dtype=torch.float, device=device)

        # not using the background class
        _prob = source_score[:, 1:].clone()
        _labels = labels[1:]
        positive_classes = _labels.eq(1).nonzero(as_tuple=False)[:, 0]
        for c in positive_classes:
            cls_prob = _prob[:, c]
            max_index = torch.argmax(cls_prob)
            gt_boxes = torch.cat(
                (gt_boxes, proposals.bbox[max_index].view(1, -1)), dim=0)
            gt_classes = torch.cat((gt_classes, c.add(1).view(1, 1)), dim=0)
            gt_scores = torch.cat((gt_scores, cls_prob[max_index].view(1, 1)),
                                  dim=0)
            _prob[max_index].fill_(0)

        if return_targets == True:
            gt_boxes = BoxList(gt_boxes, proposals.size, mode=proposals.mode)
            gt_boxes.add_field('labels', gt_classes[:, 0].float())
            # gt_boxes.add_field('difficult', bb)
            return gt_boxes

        if gt_boxes.shape[0] == 0:
            num_rois = len(source_score)
            pseudo_labels = torch.zeros(num_rois,
                                        dtype=torch.long,
                                        device=device)
            loss_weights = torch.zeros(num_rois,
                                       dtype=torch.float,
                                       device=device)
        else:
            gt_boxes = BoxList(gt_boxes, proposals.size, mode=proposals.mode)
            overlaps = boxlist_iou(proposals, gt_boxes)
            max_overlaps, gt_assignment = overlaps.max(dim=1)
            pseudo_labels = gt_classes[gt_assignment, 0]
            loss_weights = gt_scores[gt_assignment, 0]

            # Select background RoIs as those with <= FG_IOU_THRESHOLD
            bg_inds = max_overlaps.le(
                cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD).nonzero(
                    as_tuple=False)[:, 0]
            pseudo_labels[bg_inds] = 0

            # PCL_TRICK:
            # ignore_thres = 0.1
            # ignore_inds = max_overlaps.le(ignore_thres).nonzero(as_tuple=False)[:,0]
            # loss_weights[ignore_inds] = 0

        return pseudo_labels, loss_weights
Exemple #3
0
    def get_groundtruth(self, index):
        img_id = self.ids[index]
        anno = ET.parse(self._annopath % img_id).getroot()
        anno = self._preprocess_annotation(anno)

        height, width = anno["im_info"]
        target = BoxList(anno["boxes"], (width, height), mode="xyxy")
        target.add_field("labels", anno["labels"])
        target.add_field("difficult", anno["difficult"])
        return target
Exemple #4
0
    def forward_for_single_feature_map(self, anchors, objectness, box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = objectness.device
        N, A, H, W = objectness.shape

        # put in the same format as anchors
        objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1)
        objectness = objectness.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)

        num_anchors = A * H * W

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True)

        batch_idx = torch.arange(N, device=device)[:, None]
        box_regression = box_regression[batch_idx, topk_idx]

        image_shapes = [box.size for box in anchors]
        concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]

        proposals = self.box_coder.decode(
            box_regression.view(-1, 4), concat_anchors.view(-1, 4)
        )

        proposals = proposals.view(N, -1, 4)

        result = []
        for proposal, score, im_shape in zip(proposals, objectness, image_shapes):
            boxlist = BoxList(proposal, im_shape, mode="xyxy")
            boxlist.add_field("objectness", score)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result
Exemple #5
0
 def prepare_boxlist(self, boxes, scores, image_shape):
     """
     Returns BoxList from `boxes` and adds probability scores information
     as an extra field
     `boxes` has shape (#detections, 4 * #classes), where each row represents
     a list of predicted bounding boxes for each of the object classes in the
     dataset (including the background class). The detections in each row
     originate from the same object proposal.
     `scores` has shape (#detection, #classes), where each row represents a list
     of object detection confidence scores for each of the object classes in the
     dataset (including the background class). `scores[i, j]`` corresponds to the
     box at `boxes[i, j * 4:(j + 1) * 4]`.
     """
     boxes = boxes.reshape(-1, 4)
     scores = scores.reshape(-1)
     boxlist = BoxList(boxes, image_shape, mode="xyxy")
     boxlist.add_field("scores", scores)
     return boxlist
Exemple #6
0
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            scores = boxlists[i].get_field("scores")
            labels = boxlists[i].get_field("labels")
            boxes = boxlists[i].bbox
            boxlist = boxlists[i]
            result = []
            # skip the background
            for j in range(1, self.num_classes):
                inds = (labels == j).nonzero().view(-1)

                scores_j = scores[inds]
                boxes_j = boxes[inds, :].view(-1, 4)
                boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
                boxlist_for_class.add_field("scores", scores_j)
                boxlist_for_class = boxlist_nms(boxlist_for_class,
                                                self.nms_thresh,
                                                score_field="scores")
                num_labels = len(boxlist_for_class)
                boxlist_for_class.add_field(
                    "labels",
                    torch.full((num_labels, ),
                               j,
                               dtype=torch.int64,
                               device=scores.device))
                result.append(boxlist_for_class)

            result = cat_boxlist(result)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = torch.kthvalue(
                    cls_scores.cpu(),
                    number_of_detections - self.fpn_post_nms_top_n + 1)
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            results.append(result)
        return results
Exemple #7
0
    def filter_results(self, boxlist, num_classes):
        """Returns bounding-box detection results by thresholding on scores and
        applying non-maximum suppression (NMS).
        """
        # unwrap the boxlist to avoid additional overhead.
        # if we had multi-class NMS, we could perform this directly on the boxlist
        boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        device = scores.device
        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        inds_all = scores > self.score_thresh
        for j in range(1, num_classes):
            inds = inds_all[:, j].nonzero(as_tuple=False).squeeze(1)
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class = boxlist_nms(
                boxlist_for_class, self.nms
            )
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
            )
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > self.detections_per_img > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = torch.kthvalue(
                cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
            )
            keep = cls_scores >= image_thresh.item()
            keep = torch.nonzero(keep, as_tuple=False).squeeze(1)
            result = result[keep]
        return result
Exemple #8
0
    def forward(self, x, boxes):
        mask_prob = x

        scores = None
        if self.keypointer:
            mask_prob, scores = self.keypointer(x, boxes)

        assert len(boxes) == 1, "Only non-batched inference supported for now"
        boxes_per_image = [box.bbox.size(0) for box in boxes]
        mask_prob = mask_prob.split(boxes_per_image, dim=0)
        scores = scores.split(boxes_per_image, dim=0)

        results = []
        for prob, box, score in zip(mask_prob, boxes, scores):
            bbox = BoxList(box.bbox, box.size, mode="xyxy")
            for field in box.fields():
                bbox.add_field(field, box.get_field(field))
            prob = PersonKeypoints(prob, box.size)
            prob.add_field("logits", score)
            bbox.add_field("keypoints", prob)
            results.append(bbox)

        return results
Exemple #9
0
    def forward_for_single_feature_map(self, anchors, box_cls, box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            box_cls: tensor of size N, A * C, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = box_cls.device
        N, _, H, W = box_cls.shape
        A = box_regression.size(1) // 4
        C = box_cls.size(1) // A

        # put in the same format as anchors
        box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
        box_cls = box_cls.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        box_regression = box_regression.reshape(N, -1, 4)

        num_anchors = A * H * W

        candidate_inds = box_cls > self.pre_nms_thresh

        pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        results = []
        for per_box_cls, per_box_regression, per_pre_nms_top_n, \
        per_candidate_inds, per_anchors in zip(
            box_cls,
            box_regression,
            pre_nms_top_n,
            candidate_inds,
            anchors):

            # Sort and select TopN
            # TODO most of this can be made out of the loop for
            # all images.
            # TODO:Yang: Not easy to do. Because the numbers of detections are
            # different in each image. Therefore, this part needs to be done
            # per image.
            per_box_cls = per_box_cls[per_candidate_inds]

            per_box_cls, top_k_indices = \
                    per_box_cls.topk(per_pre_nms_top_n, sorted=False)

            per_candidate_nonzeros = \
                    per_candidate_inds.nonzero()[top_k_indices, :]

            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1]
            per_class += 1

            detections = self.box_coder.decode(
                per_box_regression[per_box_loc, :].view(-1, 4),
                per_anchors.bbox[per_box_loc, :].view(-1, 4))

            boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", per_box_cls)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results
Exemple #10
0
    def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        if "lvis_v0.5" not in self.ann_file:
            anno = [obj for obj in anno if obj["iscrowd"] == 0]

        if self.proposals is not None:
            img_id = self.ids[idx]
            id_field = 'indexes' if 'indexes' in self.proposals else 'ids'  # compat fix
            roi_idx = self.proposals[id_field].index(img_id)
            rois = self.proposals['boxes'][roi_idx]

            # remove duplicate, clip, remove small boxes, and take top k
            keep = unique_boxes(rois)
            rois = rois[keep, :]
            # scores = scores[keep]
            rois = BoxList(torch.tensor(rois), img.size, mode="xyxy")
            rois = rois.clip_to_image(remove_empty=True)
            rois = remove_small_boxes(boxlist=rois, min_size=2)
            if self.top_k > 0:
                rois = rois[[range(self.top_k)]]
                # scores = scores[:self.top_k]
        else:
            rois = None

        # support un-labled
        if anno == [] and 'unlabeled' in self.ann_file:
            boxes = torch.as_tensor([[0, 0, 0, 0]]).reshape(-1, 4)
            target = BoxList(boxes, img.size, mode="xyxy")
            classes = torch.tensor([0])
            target.add_field("labels", classes)
            if self._transforms is not None:
                img, target, rois = self._transforms(img, target, rois)
            target.bbox.fill_(0)
        else:
            boxes = [obj["bbox"] for obj in anno]
            boxes = torch.as_tensor(boxes).reshape(-1,
                                                   4)  # guard against no boxes
            target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

            classes = [obj["category_id"] for obj in anno]
            classes = [
                self.json_category_id_to_contiguous_id[c] for c in classes
            ]
            classes = torch.tensor(classes)
            target.add_field("labels", classes)

            if anno and "segmentation" in anno[0]:
                masks = [obj["segmentation"] for obj in anno]
                masks = SegmentationMask(masks, img.size, mode='poly')
                target.add_field("masks", masks)

            if anno and "keypoints" in anno[0]:
                keypoints = [obj["keypoints"] for obj in anno]
                keypoints = PersonKeypoints(keypoints, img.size)
                target.add_field("keypoints", keypoints)

            if anno and 'point' in anno[0]:
                click = [obj["point"] for obj in anno]
                click = Click(click, img.size)
                target.add_field("click", click)

            if anno and 'scribble' in anno[0]:
                scribble = [obj["scribble"] for obj in anno]
                # xmin, ymin, xmax, ymax
                scribble_box = []
                for sc in scribble:
                    if len(sc[0]) == 0:
                        scribble_box.append([1, 2, 3, 4])
                    else:
                        scribble_box.append(
                            [min(sc[0]),
                             min(sc[1]),
                             max(sc[0]),
                             max(sc[1])])
                scribble_box = torch.tensor(scribble_box)
                scribble_box = torch.as_tensor(scribble_box).reshape(
                    -1, 4)  # guard against no boxes
                scribble_target = BoxList(scribble_box, img.size, mode="xyxy")
                target.add_field("scribble", scribble_target)

            if anno and 'use_as' in anno[0]:
                tag_to_ind = {'tag': 0, 'point': 1, 'scribble': 2, 'box': 3}
                use_as = [tag_to_ind[obj['use_as']] for obj in anno]
                use_as = torch.tensor(use_as)
                target.add_field("use_as", use_as)

            target = target.clip_to_image(remove_empty=True)
            if self._transforms is not None:
                img, target, rois = self._transforms(img, target, rois)
        return img, target, rois, idx
Exemple #11
0
def im_detect_bbox_aug(model, images, device, rois=None):
    # Collect detections computed under different transformations
    boxlists_ts = []
    for _ in range(len(images)):
        boxlists_ts.append([])

    def add_preds_t(boxlists_t):
        for i, boxlist_t in enumerate(boxlists_t):
            if len(boxlists_ts[i]) == 0:
                # The first one is identity transform, no need to resize the boxlist
                boxlists_ts[i].append(boxlist_t)
            else:
                # Resize the boxlist as the first one
                boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size))

    # Compute detections for the original image (identity transform)
    boxlists_i = im_detect_bbox(model,
                                images,
                                cfg.INPUT.MIN_SIZE_TEST,
                                cfg.INPUT.MAX_SIZE_TEST,
                                device,
                                rois=rois)
    add_preds_t(boxlists_i)

    # Perform detection on the horizontally flipped image
    if cfg.TEST.BBOX_AUG.H_FLIP:
        boxlists_hf = im_detect_bbox_hflip(model,
                                           images,
                                           cfg.INPUT.MIN_SIZE_TEST,
                                           cfg.INPUT.MAX_SIZE_TEST,
                                           device,
                                           rois=rois)
        add_preds_t(boxlists_hf)

    # Compute detections at different scales
    for scale in cfg.TEST.BBOX_AUG.SCALES:
        max_size = cfg.TEST.BBOX_AUG.MAX_SIZE
        boxlists_scl = im_detect_bbox_scale(model,
                                            images,
                                            scale,
                                            max_size,
                                            device,
                                            rois=rois)
        add_preds_t(boxlists_scl)

        if cfg.TEST.BBOX_AUG.SCALE_H_FLIP:
            boxlists_scl_hf = im_detect_bbox_scale(model,
                                                   images,
                                                   scale,
                                                   max_size,
                                                   device,
                                                   hflip=True,
                                                   rois=rois)
            add_preds_t(boxlists_scl_hf)

    # Merge boxlists detected by different bbox aug params
    boxlists = []
    for i, boxlist_ts in enumerate(boxlists_ts):
        if cfg.TEST.BBOX_AUG.HEUR == 'UNION':
            bbox = torch.cat([boxlist_t.bbox for boxlist_t in boxlist_ts])
            scores = torch.cat(
                [boxlist_t.get_field('scores') for boxlist_t in boxlist_ts])
        elif cfg.TEST.BBOX_AUG.HEUR == 'AVG':
            bbox = torch.mean(torch.stack(
                [boxlist_t.bbox for boxlist_t in boxlist_ts]),
                              dim=0)
            scores = torch.mean(torch.stack(
                [boxlist_t.get_field('scores') for boxlist_t in boxlist_ts]),
                                dim=0)
        else:
            raise ValueError('please use proper BBOX_AUG.HEUR ')
        boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode)
        boxlist.add_field('scores', scores)
        boxlists.append(boxlist)

    # Apply NMS and limit the final detections
    results = []
    post_processor = make_roi_box_post_processor(cfg)
    for boxlist in boxlists:
        results.append(
            post_processor.filter_results(boxlist,
                                          cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES))

    return results