def minimize(self): nreps = self.nrep nbins = self.nebins visitsT = (self.visits1d) #print "min vis", np.min(visitsT) self.logP = np.where(visitsT != 0, np.log(visitsT), 0) #print "minlogp", np.min(self.logP) self.reduced_energy = self.binenergy[np.newaxis, :] / ( self.Tlist[:, np.newaxis] * self.k_B) self.whampot = WhamPotential(self.logP, self.reduced_energy) X = np.random.rand(nreps + nbins) E = self.whampot.getEnergy(X) #print "energy", E #print "quenching" from wham_utils import lbfgs_scipy ret = lbfgs_scipy(X, self.whampot) # try: # from pele.optimize import mylbfgs as quench # ret = quench(X, self.whampot, iprint=-1, maxstep=1e4) # except ImportError: # from pele.optimize import lbfgs_scipy as quench # ret = quench(X, self.whampot) #print "quench energy", ret.energy X = ret.coords self.logn_E = X[nreps:] self.w_i_final = X[:nreps]
def minimize(self): nreps = self.nrep nbins = self.nebins visitsT = (self.visits1d) #print "min vis", np.min(visitsT) self.logP = np.where( visitsT != 0, np.log( visitsT ), 0 ) #print "minlogp", np.min(self.logP) self.reduced_energy = self.binenergy[np.newaxis,:] / (self.Tlist[:,np.newaxis] * self.k_B) self.whampot = WhamPotential(self.logP, self.reduced_energy) X = np.random.rand( nreps + nbins ) E = self.whampot.getEnergy(X) #print "energy", E #print "quenching" from wham_utils import lbfgs_scipy ret = lbfgs_scipy(X, self.whampot) # try: # from pele.optimize import mylbfgs as quench # ret = quench(X, self.whampot, iprint=-1, maxstep=1e4) # except ImportError: # from pele.optimize import lbfgs_scipy as quench # ret = quench(X, self.whampot) #print "quench energy", ret.energy X = ret.coords self.logn_E = X[nreps:] self.w_i_final = X[:nreps]
def minimize(self): #shape(visits2d) is now (nqbins, nebins, nreps) #we need it to be (nreps, nqbins*nebins) #first reorder indices nreps = self.nrep nebins = self.nebins nqbins = self.nqbins nbins = self.nebins * self.nqbins reduced_energy = np.zeros([nreps, nebins, nqbins]) for j in range(self.nqbins): reduced_energy[:, :, j] = self.binenergy[np.newaxis, :] / ( self.Tlist[:, np.newaxis] * self.k_B) visits = self.visits2d visits = np.reshape(visits, [nreps, nbins]) reduced_energy = np.reshape(reduced_energy, [nreps, nbins]) self.logP = np.where(visits != 0, np.log(visits.astype(float)), 0) from wham_potential import WhamPotential whampot = WhamPotential(visits, reduced_energy) nvar = nbins + nreps if False: X = np.random.rand(nvar) else: # estimate an initial guess for the offsets and density of states # so the minimizer converges more rapidly offsets_estimate, log_dos_estimate = wham_utils.estimate_dos( visits, reduced_energy) X = np.concatenate((offsets_estimate, log_dos_estimate)) assert X.size == nvar E0, grad = whampot.getEnergyGradient(X) rms0 = np.linalg.norm(grad) / np.sqrt(grad.size) from wham_utils import lbfgs_scipy ret = lbfgs_scipy(X, whampot) # print "initial energy", whampot.getEnergy(X) # try: # from pele.optimize import mylbfgs as quench # ret = quench(X, whampot, iprint=10, maxstep = 1e4) # except ImportError: # from pele.optimize import lbfgs_scipy as quench # ret = quench(X, whampot) if self.verbose: print "chi^2 went from %g (rms %g) to %g (rms %g) in %d iterations" % ( E0, rms0, ret.energy, ret.rms, ret.nfev) #self.logn_Eq = zeros([nebins,nqbins], float64) X = ret.coords self.logn_Eq = X[nreps:] self.w_i_final = X[:nreps] self.logn_Eq = np.reshape(self.logn_Eq, [nebins, nqbins]) self.logn_Eq = np.where( self.visits2d.sum(0) == 0, self.LOGMIN, self.logn_Eq)
def minimize(self): #shape(visits2d) is now (nqbins, nebins, nreps) #we need it to be (nreps, nqbins*nebins) #first reorder indices nreps = self.nrep nebins = self.nebins nqbins = self.nqbins nbins = self.nebins * self.nqbins #visits = np.zeros([nreps, nebins, nqbins], np.integer) reduced_energy = np.zeros([nreps, nebins, nqbins]) # for k in range(self.nrep): # for j in range(self.nqbins): # for i in range(self.nebins): # #visits[k,i,j] = self.visits2d[i,j,k] # reduced_energy[k,i,j] = self.binenergy[i] / (self.Tlist[k]*self.k_B) for j in range(self.nqbins): reduced_energy[:, :, j] = self.binenergy[np.newaxis, :] / ( self.Tlist[:, np.newaxis] * self.k_B) visits = self.visits2d visits = np.reshape(visits, [nreps, nbins]) reduced_energy = np.reshape(reduced_energy, [nreps, nbins]) self.logP = np.where(visits != 0, np.log(visits.astype(float)), 0) from wham_potential import WhamPotential whampot = WhamPotential(self.logP, reduced_energy) nvar = nbins + nreps X = np.random.rand(nvar) from wham_utils import lbfgs_scipy ret = lbfgs_scipy(X, self.whampot) # print "initial energy", whampot.getEnergy(X) # try: # from pele.optimize import mylbfgs as quench # ret = quench(X, whampot, iprint=10, maxstep = 1e4) # except ImportError: # from pele.optimize import lbfgs_scipy as quench # ret = quench(X, whampot) print "quenched energy", ret.energy #self.logn_Eq = zeros([nebins,nqbins], float64) X = ret.coords self.logn_Eq = X[nreps:] self.w_i_final = X[:nreps] self.logn_Eq = np.reshape(self.logn_Eq, [nebins, nqbins]) self.logn_Eq = np.where( self.visits2d.sum(0) == 0, self.LOGMIN, self.logn_Eq)
def minimize(self): """compute the best estimate for the density of states""" nreps = self.nrep nbins = self.nebins visitsT = (self.visits1d) #print "min vis", np.min(visitsT) #print "minlogp", np.min(self.logP) self.reduced_energy = self.binenergy[np.newaxis, :] / ( self.Tlist[:, np.newaxis] * self.k_B) self.whampot = WhamPotential(visitsT, self.reduced_energy) if False: X = np.random.rand(nreps + nbins) else: # estimate an initial guess for the offsets and density of states # so the minimizer converges more rapidly offsets_estimate, log_dos_estimate = wham_utils.estimate_dos( self.visits1d, self.reduced_energy) X = np.concatenate((offsets_estimate, log_dos_estimate)) E0, grad = self.whampot.getEnergyGradient(X) rms0 = np.linalg.norm(grad) / np.sqrt(grad.size) try: from pele.optimize import lbfgs_cpp as quench if self.verbose: print "minimizing with pele lbfgs" ret = quench(X, self.whampot, tol=1e-3, maxstep=1e4, nsteps=10000) except ImportError: from wham_utils import lbfgs_scipy if self.verbose: print "minimizing with scipy lbfgs" ret = lbfgs_scipy(X, self.whampot, tol=1e-3, nsteps=10000) #print "quench energy", ret.energy if self.verbose: print "chi^2 went from %g (rms %g) to %g (rms %g) in %d iterations" % ( E0, rms0, ret.energy, ret.rms, ret.nfev) X = ret.coords self.logn_E = X[nreps:] self.w_i_final = X[:nreps]
def minimize(self): """compute the best estimate for the density of states""" nreps = self.nrep nbins = self.nebins visitsT = (self.visits1d) #print "min vis", np.min(visitsT) #print "minlogp", np.min(self.logP) self.reduced_energy = self.binenergy[np.newaxis,:] / (self.Tlist[:,np.newaxis] * self.k_B) self.whampot = WhamPotential(visitsT, self.reduced_energy) if False: X = np.random.rand( nreps + nbins ) else: # estimate an initial guess for the offsets and density of states # so the minimizer converges more rapidly offsets_estimate, log_dos_estimate = wham_utils.estimate_dos(self.visits1d, self.reduced_energy) X = np.concatenate((offsets_estimate, log_dos_estimate)) E0, grad = self.whampot.getEnergyGradient(X) rms0 = np.linalg.norm(grad) / np.sqrt(grad.size) try: from pele.optimize import lbfgs_cpp as quench if self.verbose: print "minimizing with pele lbfgs" ret = quench(X, self.whampot, tol=1e-3, maxstep=1e4, nsteps=10000) except ImportError: from wham_utils import lbfgs_scipy if self.verbose: print "minimizing with scipy lbfgs" ret = lbfgs_scipy(X, self.whampot, tol=1e-3, nsteps=10000) #print "quench energy", ret.energy if self.verbose: print "chi^2 went from %g (rms %g) to %g (rms %g) in %d iterations" % ( E0, rms0, ret.energy, ret.rms, ret.nfev) X = ret.coords self.logn_E = X[nreps:] self.w_i_final = X[:nreps]
def minimize(self): # shape(visits2d) is now (nqbins, nebins, nreps) # we need it to be (nreps, nqbins*nebins) # first reorder indices nreps = self.nrep nebins = self.nebins nqbins = self.nqbins nbins = self.nebins * self.nqbins reduced_energy = np.zeros([nreps, nebins, nqbins]) for j in range(self.nqbins): reduced_energy[:, :, j] = self.binenergy[np.newaxis, :] / (self.Tlist[:, np.newaxis] * self.k_B) visits = self.visits2d visits = np.reshape(visits, [nreps, nbins]) reduced_energy = np.reshape(reduced_energy, [nreps, nbins]) self.logP = np.where(visits != 0, np.log(visits.astype(float)), 0) from wham_potential import WhamPotential whampot = WhamPotential(visits, reduced_energy) nvar = nbins + nreps if False: X = np.random.rand(nvar) else: # estimate an initial guess for the offsets and density of states # so the minimizer converges more rapidly offsets_estimate, log_dos_estimate = wham_utils.estimate_dos(visits, reduced_energy) X = np.concatenate((offsets_estimate, log_dos_estimate)) assert X.size == nvar E0, grad = whampot.getEnergyGradient(X) rms0 = np.linalg.norm(grad) / np.sqrt(grad.size) from wham_utils import lbfgs_scipy ret = lbfgs_scipy(X, whampot) # print "initial energy", whampot.getEnergy(X) # try: # from pele.optimize import mylbfgs as quench # ret = quench(X, whampot, iprint=10, maxstep = 1e4) # except ImportError: # from pele.optimize import lbfgs_scipy as quench # ret = quench(X, whampot) if self.verbose: print "chi^2 went from %g (rms %g) to %g (rms %g) in %d iterations" % ( E0, rms0, ret.energy, ret.rms, ret.nfev, ) # self.logn_Eq = zeros([nebins,nqbins], float64) X = ret.coords self.logn_Eq = X[nreps:] self.w_i_final = X[:nreps] self.logn_Eq = np.reshape(self.logn_Eq, [nebins, nqbins]) self.logn_Eq = np.where(self.visits2d.sum(0) == 0, self.LOGMIN, self.logn_Eq)