Exemple #1
0
    def build_and_test_estimator(self, model_type):
        """Ensure that model trains and minimizes loss."""
        model = wide_deep.build_estimator(self.temp_dir, model_type)

        # Train for 1 step to initialize model and evaluate initial loss
        model.train(input_fn=wide_deep.input_fn(TEST_TRAINING_CSV,
                                                num_epochs=1,
                                                shuffle=True,
                                                batch_size=1),
                    steps=1)
        initial_results = model.evaluate(input_fn=wide_deep.input_fn(
            TEST_TRAINING_CSV, num_epochs=1, shuffle=False, batch_size=1))

        # Train for 40 steps at batch size 2 and evaluate final loss
        model.train(input_fn=wide_deep.input_fn(TEST_TRAINING_CSV,
                                                num_epochs=None,
                                                shuffle=True,
                                                batch_size=2),
                    steps=40)
        final_results = model.evaluate(input_fn=wide_deep.input_fn(
            TEST_TRAINING_CSV, num_epochs=1, shuffle=False, batch_size=1))

        print('%s initial results:' % model_type, initial_results)
        print('%s final results:' % model_type, final_results)
        self.assertLess(final_results['loss'], initial_results['loss'])
  def build_and_test_estimator(self, model_type):
    """Ensure that model trains and minimizes loss."""
    model = wide_deep.build_estimator(self.temp_dir, model_type)

    # Train for 1 step to initialize model and evaluate initial loss
    model.train(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=1, shuffle=True, batch_size=1),
        steps=1)
    initial_results = model.evaluate(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=1, shuffle=False, batch_size=1))

    # Train for 100 epochs at batch size 3 and evaluate final loss
    model.train(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=100, shuffle=True, batch_size=3))
    final_results = model.evaluate(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=1, shuffle=False, batch_size=1))

    print('%s initial results:' % model_type, initial_results)
    print('%s final results:' % model_type, final_results)

    # Ensure loss has decreased, while accuracy and both AUCs have increased.
    self.assertLess(final_results['loss'], initial_results['loss'])
    self.assertGreater(final_results['auc'], initial_results['auc'])
    self.assertGreater(final_results['auc_precision_recall'],
                       initial_results['auc_precision_recall'])
    self.assertGreater(final_results['accuracy'], initial_results['accuracy'])
Exemple #3
0
  def build_and_test_estimator(self, model_type):
    """Ensure that model trains and minimizes loss."""
    model = wide_deep.build_estimator(self.temp_dir, model_type)

    # Train for 1 step to initialize model and evaluate initial loss
    model.train(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=1, shuffle=True, batch_size=1),
        steps=1)
    initial_results = model.evaluate(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=1, shuffle=False, batch_size=1))

    # Train for 100 epochs at batch size 3 and evaluate final loss
    model.train(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=100, shuffle=True, batch_size=3))
    final_results = model.evaluate(
        input_fn=lambda: wide_deep.input_fn(
            TEST_CSV, num_epochs=1, shuffle=False, batch_size=1))

    print('%s initial results:' % model_type, initial_results)
    print('%s final results:' % model_type, final_results)

    # Ensure loss has decreased, while accuracy and both AUCs have increased.
    self.assertLess(final_results['loss'], initial_results['loss'])
    self.assertGreater(final_results['auc'], initial_results['auc'])
    self.assertGreater(final_results['auc_precision_recall'],
                       initial_results['auc_precision_recall'])
    self.assertGreater(final_results['accuracy'], initial_results['accuracy'])