Exemple #1
0
def ind_to_output(ind, inp: WusnInput) -> WusnOutput:
    out = WusnOutput(inp)
    sensors = ind[:ind.sensor_count]
    relays = ind[ind.sensor_count:]

    out.sensors = sensors
    out.relays = relays

    chunk_size = ind.sensor_count // ind.relay_count
    for i, rn in enumerate(relays):
        sns = sensors[i * chunk_size:(i + 1) * chunk_size]
        out.relay_to_sensors[rn] = []
        for sn in sns:
            out.relay_to_sensors[rn].append(sn)

    return out
Exemple #2
0
def prob_to_out(prob: pulp.LpProblem, inp: WusnInput):
    N, M, Y = len(inp.sensors), len(inp.relays), inp.relay_num
    v = prob.variablesDict()
    sensors, all_relays = inp.sensors, inp.relays

    relay_to_sensors = {}
    relays = []

    # Get assignment matrix
    for i in range(N):
        sn = sensors[i]
        for j in range(M):
            a = v['A_%d_%d' % (i, j)]
            if a.value() > 0:
                rn = all_relays[j]
                relays.append(rn)
                if rn not in relay_to_sensors.keys():
                    relay_to_sensors[rn] = [sn]
                else:
                    relay_to_sensors[rn].append(sn)
                break

    out = WusnOutput(inp,
                     sensors=inp.sensors,
                     relays=relays,
                     relay_to_sensors=relay_to_sensors)

    return out
Exemple #3
0
def lbsna2(prev: WusnOutput, verbose=True) -> WusnOutput:
    def verbose_print(*args, **kwargs):
        if verbose:
            print(*args, **kwargs)

    inp = prev.input
    _ = inp.loss
    out = WusnOutput(prev.input,
                     sensors=prev.sensors[:],
                     relays=prev.relays[:],
                     relay_to_sensors=copy.deepcopy(prev.relay_to_sensors))
    verbose_print('Starting LBSNA-2...')
    target_load = len(inp.sensors) // inp.relay_num
    verbose_print('Target load: %d' % target_load)

    current_relays = prev.relays[:]

    for i in range(inp.relay_num):
        verbose_print('Iter %d/%d' % (i + 1, inp.relay_num))
        chosen = _find_optimal(current_relays, out)
        verbose_print('Chosen relay: %s' % chosen)
        current_relays.remove(chosen)
        load_relay(chosen, current_relays, out, target_load, verbose=verbose)

    return out
Exemple #4
0
def kmeans_greedy(inp: WusnInput, heuristic=False, km_runs=1):
    X = list(map(lambda s: [s.x, s.y], inp.sensors))
    X = np.asarray(X)

    km = KMeans(n_clusters=inp.relay_num, n_init=km_runs, max_iter=3500, verbose=0)
    km.fit(X)

    clusters = [[] for _ in range(inp.relay_num)]
    pairs = [None] * inp.relay_num
    for i, c in enumerate(km.labels_):
        clusters[c].append(inp.sensors[i])
        centroid = Point(*km.cluster_centers_[c])
        pairs[c] = (clusters[c], centroid)

    # Sort clusters by centroid distance to an anchor point
    anchor = Point(0., 0.)
    pairs.sort(key=lambda x: x[1].distance(anchor))
    clusters = list(map(lambda x: x[0], pairs))

    # Greedily choose a relay for each cluster
    current_relays = inp.relays.copy()
    relay_to_sensors = {}
    selected = []

    for cl in clusters:
        best_rn = None
        best_loss = float('inf')
        for rn in current_relays:
            max_loss = -float('inf')
            for sn in cl:
                ls = inp.loss[(sn, rn)]
                if ls > max_loss:
                    max_loss = ls
            if max_loss < best_loss:
                best_loss = max_loss
                best_rn = rn

        current_relays.remove(best_rn)
        selected.append(best_rn)
        relay_to_sensors[best_rn] = cl

    if heuristic:
        out1 = WusnOutput(inp, sensors=inp.sensors.copy(),
                          relays=list(relay_to_sensors.keys()), relay_to_sensors=relay_to_sensors)
        out2 = lbsna3.lbsna3(out1, verbose=False)

        # Reorder selected and sensors
        selected, clusters = [], []
        for rn, sns in out2.relay_to_sensors.items():
            selected.append(rn)
            clusters.append(sns)

    indv = Individual(sensor_count=len(inp.sensors), relay_count=inp.relay_num)

    # Flatten clusters
    for cl in clusters:
        indv.extend(cl)
    indv.extend(selected)

    return indv
Exemple #5
0
def lbsna3(prev: WusnOutput, verbose=True) -> WusnOutput:
    def verbose_print(*args, **kwargs):
        if verbose:
            print(*args, **kwargs)

    inp = prev.input
    _ = inp.loss
    out = WusnOutput(prev.input,
                     sensors=prev.sensors[:],
                     relays=prev.relays[:],
                     relay_to_sensors=copy.deepcopy(prev.relay_to_sensors))
    Y = inp.relay_num
    verbose_print('Starting LBSNA-3...')
    target_load = len(inp.sensors) // inp.relay_num
    verbose_print('Target load: %d' % target_load)

    W = Point(0., 0.)
    for p in prev.sensors + prev.relays:
        W += Point(p.x, p.y)
    W /= (len(prev.sensors) + len(prev.relays))

    current_relays = prev.relays[:]

    for i in range(Y):
        verbose_print('Iter %d/%d' % (i + 1, Y))

        max_distance = -float("inf")
        chosen = None
        for rn in current_relays:
            if distance(rn, W) > max_distance:
                max_distance = distance(rn, W)
                chosen = rn
            sns = out.relay_to_sensors[rn]
            for sn in sns:
                if distance(sn, W) > max_distance:
                    max_distance = distance(sn, W)
                    chosen = rn

        verbose_print('Chosen relay: %s' % chosen)
        current_relays.remove(chosen)
        if len(out.relay_to_sensors[chosen]) > target_load:
            unload_relay(chosen,
                         current_relays,
                         out,
                         target_load,
                         verbose=verbose)
        else:
            load_relay(chosen,
                       current_relays,
                       out,
                       target_load,
                       verbose=verbose)

    return out
Exemple #6
0
def ind_to_output(ind, inp: WusnInput, delegate=lbsna3.lbsna3):
    # relays = list(ind)
    relays = []
    for i, v in enumerate(ind):
        if v > 0:
            relays.append(inp.relays[i])

    out = WusnOutput(inp, sensors=inp.sensors, relays=relays)
    greedy_assign(out)
    out = delegate(out, verbose=False)
    return out
Exemple #7
0
def greedy_assign(out: WusnOutput):
    for rn in out.relays:
        out.relay_to_sensors[rn] = []

    for sn in out.sensors:
        best_rn = None
        best_loss = float('inf')
        for rn in out.relays:
            if out.input.loss[(sn, rn)] < best_loss:
                best_rn = rn
                best_loss = out.input.loss[(sn, rn)]
        out.relay_to_sensors[best_rn].append(sn)
Exemple #8
0
def lurns1(inp: WusnInput) -> WusnOutput:
    sensors = inp.sensors
    in_relays = inp.relays[:]
    Y = inp.relay_num
    out_relays = []
    out_relays_to_sensors = {}
    loss = inp.loss  # L(sn, rn) = loss[(sn, rn)]

    print("Starting LURNS-1...")
    while len(out_relays) < Y:
        min_T = float("inf")
        best_rn = None
        for fq in in_relays:
            losses = []
            for id1, sn in enumerate(sensors):
                Ts = float('inf')
                for rn in out_relays + [fq]:
                    ls = loss[(sn, rn)]
                    if ls < Ts:
                        Ts = ls
                losses.append(Ts)
            Tc = max(losses)
            if Tc < min_T:
                min_T = Tc
                best_rn = fq
        print('[%d] Picked relay: %s' % (len(out_relays), best_rn))
        out_relays.append(best_rn)
        in_relays.remove(best_rn)

    # Gan cac sn cho rn
    for rn in out_relays:
        out_relays_to_sensors[rn] = []

    for sn in sensors:
        t_min = float("inf")
        best_rn = None
        for rn in out_relays:
            ls = loss[(sn, rn)]
            if ls < t_min:
                t_min = ls
                best_rn = rn
        out_relays_to_sensors[best_rn].append(sn)

    # Ket qua
    out = WusnOutput(inp, sensors, out_relays, out_relays_to_sensors)
    return out
Exemple #9
0
    plt.ioff()

    print('Enter a path to an input/output file to view its plot.')
    print('Ctrl+C or Ctrl+D to exit.')

    try:
        while True:
            path = prompt('> ', history=history)
            if not os.path.exists(path):
                print('No such path exists.')
                continue

            try:
                if path.endswith('.test'):
                    obj = WusnInput.from_file(path)
                else:
                    obj = WusnOutput.from_text_file(path)
            except Exception:
                print('Failed to open file.')
                continue

            fig = plt.figure()
            ax = Axes3D(fig)
            obj.plot(ax, highlight_max=False)
            ax.legend()
            plt.show()
            fig.clf()

    except (KeyboardInterrupt, EOFError):
        print()
Exemple #10
0
def lurns2(inp: WusnInput) -> WusnOutput:
    sensors = inp.sensors
    Y = inp.relay_num
    in_relays = inp.relays[:]
    out_relays = list()
    or_set = set()
    out_relays_to_sensors = {}
    loss = inp.loss  # L(sn, rn) = loss[(sn, rn)]

    print("Starting LURNS-2...")
    for sn in sensors:
        best_rn = None
        t_min = float("inf")
        for rn in in_relays:
            ls = loss[(sn, rn)]
            if ls < t_min:
                t_min = ls
                best_rn = rn
        print('[%d] Picking %s' % (len(out_relays), best_rn))
        # out_relays.append(best_rn)
        # in_relays.remove(best_rn)
        if best_rn not in or_set:
            or_set.add(best_rn)
            out_relays.append(best_rn)
    del or_set
    out_relays = list(out_relays)

    while len(out_relays) > Y:
        T_min = float("inf")
        best_rn = None
        for fq in out_relays:
            out2 = out_relays[:]
            out2.remove(fq)
            losses = []
            for sn in sensors:
                Ts = float('inf')
                for rn in out2:
                    ls = loss[(sn, rn)]
                    if ls < Ts:
                        Ts = ls
                losses.append(Ts)
            Tc = max(losses)
            if Tc < T_min:
                T_min = Tc
                best_rn = fq
        print('[%d] Removing %s' % (len(out_relays), best_rn))
        out_relays.remove(best_rn)

    # Gan cac sn cho rn
    for rn in out_relays:
        out_relays_to_sensors[rn] = []

    for sn in sensors:
        best_rn = None
        t_min = float("inf")
        for rn in out_relays:
            ls = loss[(sn, rn)]
            if ls < t_min:
                t_min = ls
                best_rn = rn
        out_relays_to_sensors[best_rn].append(sn)

    # Ket qua
    out = WusnOutput(inp, sensors, out_relays, out_relays_to_sensors)
    return out
Exemple #11
0
import sys
sys.path.append('.')

from wusn.commons import WusnOutput
from wusn.yuan.lbsna import lbsna2

if __name__ == '__main__':
    out1 = WusnOutput.from_text_file('tests/001_lu.out')

    out2 = lbsna2.lbsna2(out1)
    out2.to_text_file('data/001.test', 'tests/001_lb.out')
Exemple #12
0
import sys

from wusn.commons import WusnOutput

if __name__ == '__main__':
    inp = sys.argv[1]
    out_path = sys.argv[2]

    out = WusnOutput.from_text_file(inp)
    out.plot_to_file(out_path)