def test_rt_predict(): p = xa.RTPredict("SH512500", t0dict="SH000905") p.get_t0_rate()
p = xa.QDIIPredict(c, fetch=True, save=True, positions=True) try: data["t1"].append(round(p.get_t1(return_date=False), 4)) data["t1rate"].append(round(p.get_t1_rate(return_date=False), 2)) try: data["t0"].append(round(p.get_t0(return_date=False), 4)) data["t0rate"].append(round(p.get_t0_rate(return_date=False), 2)) except ValueError: data["t0"].append("-") data["t0rate"].append("-") data["position"].append(round(p.get_position(return_date=False), 3)) data["now"].append(xa.get_rt(c)["current"]) data["code"].append(c) data["name"].append(xa.get_rt(c)["name"]) except xa.exceptions.NonAccurate as e: print("%s cannot be predicted exactly now" % c) print(e.reason) for c in nonqdiis: p = xa.RTPredict(c) data["t1"].append(xa.get_rt("F" + c[2:])["current"]) data["t1rate"].append("-") data["t0"].append(round(p.get_t0(return_date=False), 4)) data["t0rate"].append(round(p.get_t0_rate(return_date=False), 2)) data["position"].append("-") data["now"].append(xa.get_rt(c)["current"]) data["code"].append(c) data["name"].append(xa.get_rt(c)["name"]) df = pd.DataFrame(data) with open("demo.html", "w") as f: df.to_html(f)