Exemple #1
0
    0.2,  # randomly shift images horizontally (fraction of total width)
    height_shift_range=
    0.2,  # randomly shift images vertically (fraction of total height)
    horizontal_flip=True,  # randomly flip images
    vertical_flip=False)  # randomly flip images
datagen.fit(x_train)

#train
batch_size = 16
epochs = 30
if (options.validation):
    epochs = 50
    History = model.fit_generator(datagen.flow(x_train,
                                               y_train,
                                               batch_size=batch_size),
                                  epochs=epochs,
                                  validation_data=(x_test, y_test),
                                  verbose=1,
                                  steps_per_epoch=x_train.shape[0] //
                                  batch_size)

else:
    History = model.fit_generator(datagen.flow(x_train,
                                               y_train,
                                               batch_size=batch_size),
                                  epochs=epochs,
                                  verbose=1,
                                  steps_per_epoch=x_train.shape[0] //
                                  batch_size)

#generate submission
if (options.save_submission):
if remote_execution:

    class LogRunMetrics(Callback):
        # callback at the end of every epoch
        def on_epoch_end(self, epoch, log):
            # log a value repeated which creates a list
            run.log('val_loss', log['val_loss'])
            run.log('loss', log['loss'])

    callbacks.append(LogRunMetrics())

model.fit_generator(
    train_generator,
    steps_per_epoch=5,
    epochs=3,
    verbose=1,
    # steps_per_epoch=50, epochs=30, verbose=1,
    callbacks=callbacks,
    validation_data=val_generator,
    validation_steps=80,
    workers=4)

# # Loss/epoch plots
plt.plot(model.history.history['categorical_crossentropy'], label='train')
plt.plot(model.history.history['val_categorical_crossentropy'], label='val')
plt.legend()
plt.xlabel('epoch')
plt.ylabel('logloss')

# log this plot to the aml workspace so we can see it in the azure portal
if remote_execution:
    run.log_image('logloss', plot=plt)