Exemple #1
0
    def process(self,
                dataset: xr.Dataset,
                geo_coding: GeoCoding,
                output_geom: ImageGeom,
                output_resampling: str,
                include_non_spatial_vars=False) -> xr.Dataset:
        """
        Perform reprojection using tie-points / ground control points.
        """
        reprojection_info = self.get_reprojection_info(dataset)

        in_rectification_mode = reprojection_info.xy_gcp_step is None
        if in_rectification_mode:
            warn_prefix = 'unsupported argument in np-GCP rectification mode'
            if reprojection_info.xy_tp_gcp_step is not None:
                warnings.warn(
                    f'{warn_prefix}: ignoring '
                    f'reprojection_info.xy_tp_gcp_step = {reprojection_info.xy_tp_gcp_step!r}'
                )
            if output_resampling != 'Nearest':
                warnings.warn(f'{warn_prefix}: ignoring '
                              f'dst_resampling = {output_resampling!r}')
            if include_non_spatial_vars:
                warnings.warn(
                    f'{warn_prefix}: ignoring '
                    f'include_non_spatial_vars = {include_non_spatial_vars!r}')

            geo_coding = geo_coding.derive(
                x_name=reprojection_info.xy_names[0],
                y_name=reprojection_info.xy_names[1])

            dataset = rectify_dataset(dataset,
                                      compute_subset=False,
                                      geo_coding=geo_coding,
                                      output_geom=output_geom,
                                      is_y_axis_inverted=True)

            if dataset is not None and geo_coding.is_geo_crs and geo_coding.xy_names != (
                    'lon', 'lat'):
                dataset = dataset.rename({
                    geo_coding.x_name: 'lon',
                    geo_coding.y_name: 'lat'
                })

            return dataset

        else:
            return reproject_xy_to_wgs84(
                dataset,
                src_xy_var_names=reprojection_info.xy_names,
                src_xy_tp_var_names=reprojection_info.xy_tp_names,
                src_xy_crs=reprojection_info.xy_crs,
                src_xy_gcp_step=reprojection_info.xy_gcp_step or 1,
                src_xy_tp_gcp_step=reprojection_info.xy_tp_gcp_step or 1,
                dst_size=output_geom.size,
                dst_region=output_geom.xy_bbox,
                dst_resampling=output_resampling,
                include_non_spatial_vars=include_non_spatial_vars)
Exemple #2
0
    def process(self,
                dataset: xr.Dataset,
                geo_coding: GeoCoding,
                output_geom: ImageGeom,
                output_resampling: str,
                include_non_spatial_vars=False) -> xr.Dataset:
        """
        Perform reprojection using tie-points / ground control points.
        """
        reprojection_info = self.get_reprojection_info(dataset)

        in_rectification_mode = reprojection_info.xy_gcp_step is None
        if in_rectification_mode:
            warn_prefix = 'unsupported argument in np-GCP rectification mode'
            if reprojection_info.xy_tp_gcp_step is not None:
                warnings.warn(
                    f'{warn_prefix}: ignoring '
                    f'reprojection_info.xy_tp_gcp_step = {reprojection_info.xy_tp_gcp_step!r}'
                )
            if output_resampling != 'Nearest':
                warnings.warn(f'{warn_prefix}: ignoring '
                              f'dst_resampling = {output_resampling!r}')
            if include_non_spatial_vars:
                warnings.warn(
                    f'{warn_prefix}: ignoring '
                    f'include_non_spatial_vars = {include_non_spatial_vars!r}')

            geo_coding = geo_coding.derive(
                x_name=reprojection_info.xy_names[0],
                y_name=reprojection_info.xy_names[1])

            dataset = rectify_dataset(dataset,
                                      compute_subset=False,
                                      geo_coding=geo_coding,
                                      output_geom=output_geom,
                                      is_y_reversed=True)
            if output_geom.is_tiled:
                # The following condition may become true, if we have used rectified_dataset(input, ..., is_y_reverse=True)
                # In this case y-chunksizes will also be reversed. So that the first chunk is smaller than any other.
                # Zarr will reject such datasets, when written.
                if dataset.chunks.get('lat')[0] < dataset.chunks.get(
                        'lat')[-1]:
                    dataset = dataset.chunk({
                        'lat': output_geom.tile_height,
                        'lon': output_geom.tile_width
                    })
            if dataset is not None and geo_coding.is_geo_crs and geo_coding.xy_names != (
                    'lon', 'lat'):
                dataset = dataset.rename({
                    geo_coding.x_name: 'lon',
                    geo_coding.y_name: 'lat'
                })

            return dataset

        else:
            return reproject_xy_to_wgs84(
                dataset,
                src_xy_var_names=reprojection_info.xy_names,
                src_xy_tp_var_names=reprojection_info.xy_tp_names,
                src_xy_crs=reprojection_info.xy_crs,
                src_xy_gcp_step=reprojection_info.xy_gcp_step or 1,
                src_xy_tp_gcp_step=reprojection_info.xy_tp_gcp_step or 1,
                dst_size=output_geom.size,
                dst_region=output_geom.xy_bbox,
                dst_resampling=output_resampling,
                include_non_spatial_vars=include_non_spatial_vars)