def test_frozen_featurizer_1(data): ff = FrozenFeaturizer(data[0]) ff_features = ff.fit_transform(data[1]) assert ff_features.shape == (10, 11) ff_features = ff.fit_transform(data[1], depth=1) assert ff_features.shape == (10, 4) ff_features = ff.fit_transform(data[1]) assert ff_features.shape == (10, 11)
def test_frozen_featurizer_3(data): ff = FrozenFeaturizer(data[0]) try: ff.feature_labels except ValueError: assert True else: assert False, 'should got ValueError' ff.fit_transform(data[2]) try: ff.feature_labels except ValueError: assert False
def test_frozen_featurizer_2(data): ff = FrozenFeaturizer(data[0]) ff_features = ff.fit_transform(data[2]) assert ff_features.shape == (10, 11) assert isinstance(ff_features, pd.DataFrame) assert ff_features.index.tolist() == list(data[3]) _hlayers = [7, 4] labels = [ 'L(' + str(i - len(_hlayers)) + ')_' + str(j + 1) for i in range(2) for j in range(_hlayers[i]) ] assert ff_features.columns.tolist() == list(labels)
def test_frozen_featurizer_5(data): ff = FrozenFeaturizer(data[0]) with pytest.warns( UserWarning, match='is over the max depth of hidden layers starting at the given' ): ff_features = ff.fit_transform(data[1], depth=2, n_layer=3) assert ff_features.shape == (10, 11) with pytest.warns(UserWarning, match='is greater than the max depth of hidden layers'): ff_features = ff.fit_transform(data[4], depth=3, n_layer=2) assert ff_features.shape == (20, 11) ff = FrozenFeaturizer(data[5]) ff_features = ff.transform(data[1], depth=2, return_type='df') desc_ori = [] for i in [1, 2]: desc_ori.append(ff_features[ff_features.columns[[ f'L(-{i})' in s for s in ff_features.columns.values ]]]) desc_new = [] for i in [1, 2]: for j in [1, 2]: desc_new.append( ff.transform(data[1], depth=j, n_layer=i, return_type='df')) for i in range(2): tmp = desc_new[i] == desc_ori[i] assert all(tmp.all())
def test_frozen_featurizer_3(data): ff = FrozenFeaturizer(data[0]) with pytest.raises(ValueError): ff.feature_labels ff.fit_transform(data[2]) ff.feature_labels ff = FrozenFeaturizer(data[5]) with pytest.raises(ValueError): ff.feature_labels ff.fit_transform(data[2]) ff.feature_labels
def test_frozen_featurizer_4(data): ff = FrozenFeaturizer(data[0]) ff_features = ff.fit_transform(data[1]) assert ff_features.shape == (10, 11) ff_features = ff.fit_transform(data[4]) assert ff_features.shape == (20, 11) ff = FrozenFeaturizer(data[5]) ff_features = ff.fit_transform(data[1]) assert ff_features.shape == (10, 11) ff_features = ff.fit_transform(data[4]) assert ff_features.shape == (20, 11)