Exemple #1
0
def test_set_metric():

    ds, coords, metrics = datasets_grid_metric("C")
    expected_metrics = {k: [ds[va] for va in v] for k, v in metrics.items()}

    grid = Grid(ds, coords=coords, metrics=metrics)

    grid_manual = Grid(ds, coords=coords)

    for key, value in metrics.items():
        grid_manual.set_metrics(key, value)

    assert len(grid._metrics) > 0

    for k, v in expected_metrics.items():

        k = frozenset(k)
        assert k in grid._metrics.keys()
        assert k in grid_manual._metrics.keys()

        for metric_expected, metric in zip(v, grid_manual._metrics[k]):
            xr.testing.assert_allclose(metric_expected.reset_coords(drop=True), metric)

        for metric_expected, metric in zip(v, grid._metrics[k]):
            xr.testing.assert_allclose(metric_expected.reset_coords(drop=True), metric)
Exemple #2
0
def test_set_metric_overwrite_true(
    metric_axes, exist_metric_varname, add_metric_varname, expected_varname
):
    ds, coords, metrics = datasets_grid_metric("C")

    ds = ds.assign_coords({add_metric_varname[0]: ds[exist_metric_varname[1]] * 10})

    metrics = {
        k: [m for m in v if m in exist_metric_varname] for k, v in metrics.items()
    }
    grid = Grid(ds, coords=coords, metrics=metrics)

    for av in add_metric_varname:
        grid.set_metrics(metric_axes, av, overwrite=True)

    key = frozenset(list(metric_axes))
    set_metric = grid._metrics.get(key)

    expected_metric = []
    for ev in expected_varname:
        metric_var = ds[ev].reset_coords(drop=True)
        expected_metric.append(metric_var)

    assert len(set_metric) == len(expected_metric)

    for i in range(len(set_metric)):
        assert set_metric[i].equals(expected_metric[i])
Exemple #3
0
def test_set_metric_key_errors(metric_axes, add_metric):
    ds, coords, metrics = datasets_grid_metric("C")
    grid = Grid(ds, coords=coords, metrics=metrics)

    if len(metric_axes) == 1:
        with pytest.raises(KeyError, match="not found in dataset."):
            grid.set_metrics(metric_axes, add_metric)
    else:
        with pytest.raises(KeyError, match="not compatible with grid axes"):
            grid.set_metrics(metric_axes, add_metric)
Exemple #4
0
def test_set_metric_value_errors(metric_axes, overwrite_metric, add_metric):
    ds, coords, metrics = datasets_grid_metric("C")

    if add_metric is not None:
        ds = ds.assign_coords({overwrite_metric: ds[add_metric] * 10})

    grid = Grid(ds, coords=coords, metrics=metrics)

    with pytest.raises(ValueError, match="setting overwrite=True."):
        grid.set_metrics(metric_axes, overwrite_metric)
Exemple #5
0
def test_get_metric_with_conditions_02a(periodic):
    # Condition 2, case a: interpolate metric with matching axis to desired dimensions
    ds, coords, _ = datasets_grid_metric("C")
    grid = Grid(ds, coords=coords, periodic=periodic, boundary="extend")
    grid.set_metrics(("X", "Y"), "area_e")

    get_metric = grid.get_metric(ds.v, ("X", "Y"))

    expected_metric = grid.interp(ds["area_e"], ("X", "Y"))

    xr.testing.assert_allclose(get_metric, expected_metric)
Exemple #6
0
def test_get_metric_with_conditions_04a():
    # Condition 4, case a: 1 metric on the wrong position (must interpolate before multiplying)
    ds, coords, _ = datasets_grid_metric("C")
    grid = Grid(ds, coords=coords)
    grid.set_metrics(("X"), "dx_t")
    grid.set_metrics(("Y"), "dy_n")

    get_metric = grid.get_metric(ds.v, ("X", "Y"))

    interp_metric = grid.interp(ds.dx_t, "Y")
    expected_metric = (interp_metric * ds.dy_n).reset_coords(drop=True)

    xr.testing.assert_allclose(get_metric, expected_metric)
Exemple #7
0
def test_get_metric_with_conditions_03b():
    # Condition 3: use provided metrics with matching dimensions to calculate for required metric
    ds, coords, metrics = datasets_grid_metric("C")
    grid = Grid(ds, coords=coords)
    grid.set_metrics(("X", "Y"), "area_t")
    grid.set_metrics(("Z"), "dz_t")

    get_metric = grid.get_metric(ds.tracer, ("X", "Y", "Z"))

    metric_var_1 = ds.area_t
    metric_var_2 = ds.dz_t
    expected_metric = (metric_var_1 * metric_var_2).reset_coords(drop=True)

    xr.testing.assert_allclose(get_metric, expected_metric)
Exemple #8
0
def test_get_metric_with_conditions_02b():
    # Condition 2, case b: get_metric should select for the metric with matching axes and interpolate from there,
    # even if other metrics in the desired positions are available
    ds, coords, _ = datasets_grid_metric("C")
    grid = Grid(ds, coords=coords)
    grid.set_metrics(("X", "Y"), "area_e")
    grid.set_metrics(("X"), "dx_n")
    grid.set_metrics(("Y"), "dx_n")

    get_metric = grid.get_metric(ds.v, ("X", "Y"))

    expected_metric = grid.interp(ds["area_e"], ("X", "Y"))

    xr.testing.assert_allclose(get_metric, expected_metric)
Exemple #9
0
def test_interp_like(
    metric_axes, metric_name, periodic, boundary, boundary_expected, fill_value
):

    ds, coords, _ = datasets_grid_metric("C")
    grid = Grid(ds, coords=coords, periodic=periodic)
    grid.set_metrics(metric_axes, metric_name)
    metric_available = grid._metrics.get(frozenset(metric_axes), None)
    metric_available = metric_available[0]
    interp_metric = grid.interp_like(
        metric_available, ds.u, boundary=boundary, fill_value=fill_value
    )
    expected_metric = grid.interp(
        ds[metric_name], metric_axes, boundary=boundary_expected, fill_value=fill_value
    )

    xr.testing.assert_allclose(interp_metric, expected_metric)