def test_merge(self): pipe_const0 = utp.Inputer(item='test') pipe_const1 = utp.Inputer(item='test') pipe_const2 = utp.Inputer(item='test') pipe_merge = utp.Pipe([pipe_const0, pipe_const1, pipe_const2]) output = next(pipe_merge.out) expected = ['test', 'test', 'test'] self.assertTrue(output == expected, msg=utg.errmsg(output, expected))
def test_stack_tensor(self): input1 = np.ones([3, 3]) input2 = np.ones([4, 4]) * 2 pipe_input1 = utp.Inputer(input1) pipe_input2 = utp.Inputer(input2) pipe_stack = utp.Pipe([pipe_input1, pipe_input2]) output = next(pipe_stack.out) expect = [input1, input2] self.assertTrue(output == expect, msg=utg.errmsg(output, expect))
def test_gray(self): pipe_a = utp.Inputer(np.ones([1, 10, 10, 1])) pipe_b = utp.Inputer(np.zeros([1, 10, 10, 1])) pipe_merge = utp.Pipe([pipe_a, pipe_b]) pipe_stacker = utp.TensorStacker(pipe_merge) stacked = next(pipe_stacker.out) output = stacked.shape expect = (2, 10, 10, 1) self.assertTrue(output == expect, msg=utg.errmsg(output, expect))
def test_gray2(self): data_file = os.path.join(TEST_DATA_PATH, 'img000000001.npy') imgrgb = np.array(np.load(data_file)) imggray = imgrgb[:, :, 0] imgin = np.reshape(imggray, [1, 288, 352, 1]) pipe_a = utp.Inputer(imgin) pipe_b = utp.Inputer(imgin) pipe_merge = utp.Pipe([pipe_a, pipe_b]) pipe_stacker = utp.TensorStacker(pipe_merge) stacked = next(pipe_stacker.out) output = stacked.shape expect = (2, 288, 352, 1) self.assertTrue(output == expect, msg=utg.errmsg(output, expect))
def test_auto_after_stacker(self): data_file = os.path.join(TEST_DATA_PATH, 'img000000001.npy') imgrgb = np.array(np.load(data_file)) imgin = np.reshape(imgrgb, [1, 288, 352, 3]) pipe_a = utp.Inputer(imgin) pipe_b = utp.Inputer(imgin) pipe_merge = utp.Pipe([pipe_a, pipe_b]) pipe_stacker = utp.TensorStacker(pipe_merge) pipe_tensor = utp.TensorFormater(pipe_stacker) tensor = next(pipe_tensor.out) output = tensor.shape expect = (2, 288, 352, 3) self.assertTrue(output == expect, msg=utg.errmsg(output, expect))
def test_set_copy_number(self): pipe_input = utp.Inputer(item='test') pipe_copy = utp.Copyer(pipe_input) pipe_copy.copy_number = 3 output = [item for item in pipe_copy.out] expected = ['test', 'test', 'test'] self.assertTrue(output == expected, msg=utg.errmsg(output, expected))
def test_basic(self): pipe_input = utp.Inputer(item='test', const_output=True) output = [] for i in xrange(3): output.append(next(pipe_input.out)) expected = ['test', 'test', 'test'] self.assertTrue(output == expected, msg=utg.errmsg(output, expected))
def test_item(self): pipe_input = utp.Inputer() pipe_input.insert('test1') pipe_input.insert('test2') pipe_input.insert('test3') output = [item for item in pipe_input.out] expected = ['test1', 'test2', 'test3'] self.assertTrue(output == expected, msg=utg.errmsg(output, expected))
def test_auto_imgrgb(self): data_file = os.path.join(TEST_DATA_PATH, 'img000000001.npy') imgrgb = np.array(np.load(data_file)) shapergb = imgrgb.shape pipe_input = utp.Inputer(imgrgb) pipe_formater = utp.TensorFormater(pipe_input) imgtensor = next(pipe_formater.out) output = imgtensor.shape expect = [1] + list(shapergb) expect = tuple(expect) self.assertTrue(output == expect, msg=utg.errmsg(output, expect))
def test_auto_stacked_image(self): data_file = os.path.join(TEST_DATA_PATH, 'img000000001.npy') imgrgb = np.array(np.load(data_file)) input_ = np.zeros( [2, imgrgb.shape[0], imgrgb.shape[1], imgrgb.shape[2]]) input_[0, :, :, :] = imgrgb input_[1, :, :, :] = imgrgb pipe_input = utp.Inputer(input_) pipe_tensor = utp.TensorFormater(pipe_input) tensor = next(pipe_tensor.out) output = tensor.shape expect = (2, 288, 352, 3) self.assertTrue(output == expect, msg=utg.errmsg(output, expect))
def _prepare(self): super(DataSetSuperResolution, self)._prepare() if not self._is_lock: data_filename_iter = utp.FileNameLooper( self._path_data, prefix=self._prefix_data, random_shuffle=self._is_shuffle, ids=self._ids, max_epoch=self._epoch_max) self._filename_iter = data_filename_iter else: self._filename_iter = utp.FileNameLooper(self._path_data, prefix=self._prefix_data, random_shuffle=False, ids=self._ids, max_epoch=1) data_filename_iter = utp.Inputer() self._filename_inputer = data_filename_iter self._is_next_file = True if self._is_single: data_image = utp.NPYReaderSingle(data_filename_iter) data_image_copyer = utp.Copyer(data_image, copy_number=2) data_tensor = utp.TensorFormater(data_image_copyer) label_tensor = utp.TensorFormater(data_image_copyer) else: data_filename_copyer = utp.Copyer(data_filename_iter, copy_number=2) label_filename = utp.LabelFinder(data_filename_copyer, utg.label_name) data_filename = utp.Pipe(data_filename_copyer) data_image = utp.NPYReaderSingle(data_filename) label_image = utp.NPYReaderSingle(label_filename) data_tensor = utp.TensorFormater(data_image) label_tensor = utp.TensorFormater(label_image) if self._is_need_gray: data_full = utp.ImageGrayer(data_tensor) label_full = utp.ImageGrayer(label_tensor) else: data_full = data_tensor label_full = label_tensor merge = utp.Pipe([data_full, label_full]) stacker = utp.TensorStacker(merge) multi_tensor = utp.TensorFormater(stacker) stacked_shape = [2] + list(self._shape_o) patch_generator = utp.PatchGenerator(multi_tensor, shape=stacked_shape, n_patches=self._n_patches, strides=self._strides, random_gen=self._is_shuffle, check_all=self._is_check_all) buffer_stacked = utp.Buffer(patch_generator) slicer = utp.TensorSlicer(buffer_stacked, self._shape_sample_o) buffer_hl = utp.Buffer(slicer) self._label = utp.TensorFormater(buffer_hl) down_sample = utp.DownSampler(buffer_hl, self._down_sample_ratio, method=self._down_sample_method) self._data = utp.TensorFormater(down_sample) self._testo = self._filename_iter self._means = [] self._stds = []