def concrete_type_from_dims(primitive: Token, dims: Tuple[int, ...]) -> 'ConcreteType': """Creates a concrete type from the primitive type token and dims. Args: primitive: The token holding the primitive type as a keyword. dims: Dimensions to apply to the primitive type; e.g. () is scalar, (5) is 1-D array of 5 elements having the primitive type. Returns: A concrete type object. Raises: ValueError: If the primitive keyword is unrecognized or dims are empty. """ if primitive.is_keyword(Keyword.BITS) or primitive.is_keyword(Keyword.UN): base_type = BitsType(signed=False, size=dims[-1]) elif primitive.is_keyword(Keyword.SN): base_type = BitsType(signed=True, size=dims[-1]) else: assert primitive.kind == TokenKind.KEYWORD signedness, bits = TYPE_KEYWORDS_TO_SIGNEDNESS_AND_BITS[primitive.value] element_type = BitsType(signedness, bits) while dims: dims, minor = dims[:-1], dims[-1] element_type = ArrayType(element_type, minor) return element_type result = concrete_type_from_element_type_and_dims(base_type, dims[:-1]) logging.vlog(4, '%r %r => %r', primitive, dims, result) return result
def test_generate_tuple_argument(self): rng = ast_generator.RngState(0) args = ast_generator.generate_arguments((TupleType((BitsType( signed=False, size=123), BitsType(signed=True, size=22))), ), rng) self.assertLen(args, 1) self.assertTrue(args[0].is_tuple()) self.assertEqual(args[0].get_elements()[0].get_bit_count(), 123) self.assertEqual(args[0].get_elements()[1].get_bit_count(), 22)
def test_generate_tuple_argument(self): rng = random.Random(0) args = sample_generator.generate_arguments((TupleType( (BitsType(signed=False, size=123), BitsType(signed=True, size=22))),), rng) self.assertLen(args, 1) self.assertTrue(args[0].is_tuple()) self.assertEqual(args[0].tuple_members[0].get_bit_count(), 123) self.assertEqual(args[0].tuple_members[1].get_bit_count(), 22)
def test_generate_mixed_bits_arguments(self): rng = ast_generator.RngState(0) args = sample_generator.generate_arguments( (BitsType(signed=False, size=123), BitsType(signed=True, size=22)), rng) self.assertLen(args, 2) self.assertTrue(args[0].is_ubits()) self.assertEqual(args[0].get_bit_count(), 123) self.assertTrue(args[1].is_sbits()) self.assertEqual(args[1].get_bit_count(), 22)
def test_equality(self): fake_pos = Pos('<fake>', 0, 0) fake_span = Span(fake_pos, fake_pos) p = BitsType(signed=False, size=ParametricSymbol('N', fake_span)) c = BitsType(signed=False, size=32) self.assertTrue(c.__eq__(c)) self.assertFalse(c.__ne__(c)) self.assertTrue(p.__eq__(p)) self.assertFalse(p.__ne__(p)) self.assertTrue(p.__ne__(c)) self.assertFalse(p.__eq__(c))
def test_arrayness(self): tabular = [ # (type, is_array, element_count) (TupleType(members=()), False, None), (BitsType(signed=False, size=5), False, None), (ArrayType(BitsType(False, 5), 7), True, 7), (ArrayType(TupleType(members=()), 7), True, 7), ] for t, is_array, element_count in tabular: self.assertEqual(isinstance(t, ArrayType), is_array, msg=str(t)) if is_array: self.assertEqual(t.size, element_count, msg=str(t))
def test_stringify(self): # Test without a suffix. t = BitsType(signed=False, size=3) fake_pos = Pos('<fake>', 9, 10) fake_span = Span(fake_pos, fake_pos) e = XlsTypeError(fake_span, t, t) self.assertEndsWith(str(e), '@ <fake>:10:11-10:11')
def fsig(arg_types: ArgTypes, name: Text, span: Span, ctx: DeduceCtx, _: Optional[ParametricBindings]) -> ConcreteType: _Checker(arg_types, name, span).len(2).is_uN((0, 1)) return_type = BitsType(signed=False, size=arg_types[0].get_total_bit_count() + arg_types[1].get_total_bit_count()) return FunctionType(arg_types, return_type)
def test_sign_convert_tuple_value(self): # type is (u8, (u16, s8) t = TupleType( (BitsType(signed=False, size=8), TupleType((BitsType(signed=False, size=16), BitsType(signed=True, size=8))))) self.assertEqual( sample_runner.sign_convert_value( t, Value.make_tuple((Value.make_ubits(8, 0x42), Value.make_tuple( (Value.make_ubits(16, 0x33), Value.make_ubits(8, 0x44)))))), Value.make_tuple((Value.make_ubits(8, 0x42), Value.make_tuple((Value.make_ubits(16, 0x33), Value.make_sbits(8, 0x44))))))
def map_size(t: ConcreteType, m: ast.Module, f: Callable[[Dim], Dim]) -> ConcreteType: """Runs f on all dimensions within t (transively for contained types).""" assert isinstance(m, ast.Module), m rec = functools.partial(map_size, m=m, f=f) if isinstance(t, ArrayType): return ArrayType(rec(t.get_element_type()), f(t.size)) elif isinstance(t, BitsType): return BitsType(t.signed, f(t.size)) elif isinstance(t, TupleType): nominal = t.get_nominal_type() if t.named: return TupleType( tuple((name, rec(type_)) for name, type_ in t.members), nominal) assert nominal is None, nominal return TupleType(tuple(rec(e) for e in t.members)) elif isinstance(t, EnumType): return EnumType(t.get_nominal_type(), f(t.size)) elif isinstance(t, FunctionType): mapped_params = tuple(rec(p) for p in t.params) mapped_return_type = rec(t.return_type) return FunctionType(mapped_params, mapped_return_type) else: raise NotImplementedError(t.__class__)
def test_generate_single_bits_arguments(self): rng = ast_generator.RngState(0) args = ast_generator.generate_arguments( (BitsType(signed=False, size=42), ), rng) self.assertLen(args, 1) self.assertTrue(args[0].is_ubits()) self.assertEqual(args[0].get_bit_count(), 42)
def test_generate_array_argument(self): rng = random.Random(0) args = sample_generator.generate_arguments( (ArrayType(BitsType(signed=True, size=4), 24),), rng) self.assertLen(args, 1) self.assertTrue(args[0].is_array()) self.assertLen(args[0].array_payload.elements, 24) self.assertTrue(args[0].array_payload.index(0).is_sbits()) self.assertTrue(args[0].array_payload.index(0).get_bit_count(), 4)
def test_array_vs_multidim_bits_equality(self): a = ArrayType(BitsType(signed=False, size=5), 7) self.assertEqual(str(a), 'uN[5][7]') self.assertEqual(7 * 5, a.get_total_bit_count()) self.assertEqual(7, a.size) self.assertEqual(5, a.get_element_type().size) # pytype: disable=attribute-error self.assertEqual((7, 5), a.get_all_dims()) self.assertEqual((), TupleType(()).get_all_dims())
def test_generate_array_argument(self): rng = ast_generator.RngState(0) args = ast_generator.generate_arguments( (ArrayType(BitsType(signed=True, size=4), 24), ), rng) self.assertLen(args, 1) self.assertTrue(args[0].is_array()) self.assertLen(args[0].get_elements(), 24) self.assertTrue(args[0].index(0).is_sbits()) self.assertTrue(args[0].index(0).get_bit_count(), 4)
def _verify_constraints(self) -> None: """Verifies that all parametrics adhere to signature constraints. Take the following function signature for example: fn [X: u32, Y: u32 = X + X] f(x: bits[X], y: bits[Y]) -> bits[Y] The parametric Y has two constraints based only off the signature: it must match the bitwidth of the argument y and it must be equal to X + X. This function is responsible for computing any derived parametrics and asserting that their values are consistent with other constraints (arg types). """ for binding, constraint in self.constraints.items(): if constraint is None: # e.g. [X: u32] continue try: fn_name, fn_symbolic_bindings = self.ctx.fn_stack[-1] fn_ctx = (self.ctx.module.name, fn_name, tuple(fn_symbolic_bindings.items())) result = self.ctx.interpret_expr(self.ctx.module, self.ctx.type_info, self.symbolic_bindings, self.bit_widths, constraint, fn_ctx=fn_ctx) except KeyError as e: # We haven't seen enough bindings to evaluate this constraint. continue if binding in self.symbolic_bindings.keys(): if result != self.symbolic_bindings[binding]: raise XlsTypeError( self.span, BitsType(signed=False, size=self.symbolic_bindings[binding]), BitsType(signed=False, size=result), suffix= f'Parametric constraint violated, saw {binding} = {constraint} = {result}; ' f'then {binding} = {self.symbolic_bindings[binding]}') else: self.symbolic_bindings[binding] = result
def test_stringify(self): u32 = BitsType(signed=False, size=32) tabular = [ # type size total_bit_count str (ArrayType(u32, 7), 7, 32 * 7, 'uN[32][7]'), (u32, 32, 32, 'uN[32]'), ] for t, size, total_bit_count, s in tabular: self.assertEqual(t.size, size) self.assertEqual(t.get_total_bit_count(), total_bit_count) self.assertEqual(str(t), s)
def test_sign_convert_array_value(self): t = ArrayType(BitsType(signed=True, size=8), 3) self.assertEqual( sample_runner.sign_convert_value( t, Value.make_array( (Value.make_ubits(8, 0x42), Value.make_ubits(8, 0x43), Value.make_ubits(8, 0x44)))), Value.make_array( (Value.make_sbits(8, 0x42), Value.make_sbits(8, 0x43), Value.make_sbits(8, 0x44))))
def _strength_reduce_enum(type_: ast.Enum, bit_count: int) -> ConcreteType: """Turns an enum to corresponding (bits) concrete type (w/signedness). For example, used in conversion checks. Args: type_: AST node (enum definition) to convert. bit_count: The bit count of the underlying bits type for the enum definition, as determined by type inference or interpretation. Returns: The concrete type that represents the enum's underlying bits type. """ assert isinstance(type_, ast.Enum), type_ signed = type_.signed assert isinstance(signed, bool), type_ return BitsType(signed, bit_count)
def _symbolic_bind_dims(self, param_type: ConcreteType, arg_type: ConcreteType) -> None: """Binds parametric symbols in param_type according to arg_type.""" # Create bindings for symbolic parameter dimensions based on argument # values passed. param_dim = param_type.size.value arg_dim = arg_type.size.value if not isinstance(param_dim, parametric_expression.ParametricSymbol): return pdim_name = param_dim.identifier if (pdim_name in self.symbolic_bindings and self.symbolic_bindings[pdim_name] != arg_dim): if self.constraints[pdim_name]: # Error on violated constraint. raise XlsTypeError( self.span, BitsType(signed=False, size=self.symbolic_bindings[pdim_name]), arg_type, suffix=f'Parametric constraint violated, saw {pdim_name} ' f'= {self.constraints[pdim_name]} ' f'= {self.symbolic_bindings[pdim_name]}; ' f'then {pdim_name} = {arg_dim}') else: # Error on conflicting argument types. raise XlsTypeError( self.span, param_type, arg_type, suffix= 'Parametric value {} was bound to different values at ' 'different places in invocation; saw: {!r}; then: {!r}'. format(pdim_name, self.symbolic_bindings[pdim_name], arg_dim)) logging.vlog(2, 'Binding %r to %s', pdim_name, arg_dim) self.symbolic_bindings[pdim_name] = arg_dim
def concrete_type_from_value(value: Value) -> ConcreteType: """Returns the concrete type of 'value'. Note that: * Non-zero-length arrays are assumed (for zero length arrays we can't currently deduce the type from the value because the concrete element type is not reified in the array value. * Enums are strength-reduced to their underlying bits (storage) type. Args: value: Value to determine the concrete type for. """ if value.tag in (Tag.UBITS, Tag.SBITS): signed = value.tag == Tag.SBITS return BitsType(signed, value.bits_payload.bit_count) elif value.tag == Tag.ARRAY: element_type = concrete_type_from_value(value.array_payload.index(0)) return ArrayType(element_type, len(value)) elif value.tag == Tag.TUPLE: return TupleType( tuple(concrete_type_from_value(m) for m in value.tuple_members)) else: assert value.tag == Tag.ENUM, value return _strength_reduce_enum(value.type_, value.bits_payload.bit_count)
def test_array_bit_count(self): e = BitsType(signed=False, size=4) a = ArrayType(e, 3) self.assertEqual(a.get_total_bit_count(), 12)