def setUp(self): xnmt.events.clear() self.model_context = ModelContext() self.model_context.dynet_param_collection = PersistentParamCollection( "some_file", 1) self.model = DefaultTranslator( src_embedder=SimpleWordEmbedder(self.model_context, vocab_size=100), encoder=BiLSTMSeqTransducer(self.model_context), attender=MlpAttender(self.model_context), trg_embedder=SimpleWordEmbedder(self.model_context, vocab_size=100), decoder=MlpSoftmaxDecoder(self.model_context, vocab_size=100, bridge=CopyBridge(self.model_context, dec_layers=1)), ) self.model.initialize_training_strategy(TrainingStrategy()) self.model.set_train(False) self.model.initialize_generator() self.training_corpus = BilingualTrainingCorpus( train_src="examples/data/head.ja", train_trg="examples/data/head.en", dev_src="examples/data/head.ja", dev_trg="examples/data/head.en") self.corpus_parser = BilingualCorpusParser( src_reader=PlainTextReader(), trg_reader=PlainTextReader(), training_corpus=self.training_corpus)
def test_loss_model3(self): model = DefaultTranslator( src_embedder=SimpleWordEmbedder(self.model_context, vocab_size=100), encoder=BiLSTMSeqTransducer(self.model_context, layers=3), attender=MlpAttender(self.model_context), trg_embedder=SimpleWordEmbedder(self.model_context, vocab_size=100), decoder=MlpSoftmaxDecoder(self.model_context, vocab_size=100, bridge=CopyBridge(self.model_context, dec_layers=1)), ) model.set_train(False) self.assert_single_loss_equals_batch_loss(model)