def __init__(self,
              ## COMPONENTS
              embed_encoder=None, segment_composer=None, final_transducer=None,
              ## OPTIONS
              length_prior=3.3,
              length_prior_alpha=None, # GeometricSequence
              epsilon_greedy=None,     # GeometricSequence
              reinforce_scale=None,    # GeometricSequence
              confidence_penalty=None, # SegmentationConfidencePenalty
              # For segmentation warmup (Always use the poisson prior)
              segmentation_warmup=0,
              ## FLAGS
              learn_delete       = False,
              use_baseline       = True,
              z_normalization    = True,
              learn_segmentation = True,
              compose_char       = False,
              log_reward         = True,
              debug=False,
              print_sample=False):
   model = ParamManager.my_params(self)
   # Sanity check
   assert embed_encoder is not None
   assert segment_composer is not None
   assert final_transducer is not None
   # The Embed Encoder transduces the embedding vectors to a sequence of vector
   self.embed_encoder = embed_encoder
   if not hasattr(embed_encoder, "hidden_dim"):
     embed_encoder_dim = yaml_context.default_layer_dim
   else:
     embed_encoder_dim = embed_encoder.hidden_dim
   # The Segment transducer produced word embeddings based on sequence of character embeddings
   self.segment_composer = segment_composer
   # The final transducer
   self.final_transducer = final_transducer
   # Decision layer of segmentation
   self.segment_transform = linear.Linear(input_dim  = embed_encoder_dim,
                                          output_dim = 3 if learn_delete else 2)
   # The baseline linear regression model
   self.baseline = linear.Linear(input_dim = embed_encoder_dim,
                                 output_dim = 1)
   # Flags
   self.use_baseline = use_baseline
   self.learn_segmentation = learn_segmentation
   self.learn_delete = learn_delete
   self.z_normalization = z_normalization
   self.debug = debug
   self.compose_char = compose_char
   self.print_sample = print_sample
   self.log_reward = log_reward
   # Fixed Parameters
   self.length_prior = length_prior
   self.segmentation_warmup = segmentation_warmup
   # Variable Parameters
   self.length_prior_alpha = length_prior_alpha
   self.lmbd = reinforce_scale
   self.eps = epsilon_greedy
   self.confidence_penalty = confidence_penalty
   # States of the object
   self.train = False
 def __init__(self, exp_global=Ref(Path("exp_global")), evaluation_metric=None, sample_length=50, use_baseline=False, decoder_hidden_dim=None):
   self.sample_length = sample_length
   if evaluation_metric is None:
     self.evaluation_metric = xnmt.evaluator.BLEUEvaluator(ngram=4, smooth=1)
   else:
     self.evaluation_metric = evaluation_metric
   self.use_baseline = use_baseline
   if self.use_baseline:
     model = exp_global.dynet_param_collection.param_col
     decoder_hidden_dim = decoder_hidden_dim or exp_global.default_layer_dim
     self.baseline = linear.Linear(input_dim=decoder_hidden_dim, output_dim=1, model=model)
Exemple #3
0
    def __init__(self,
                 yaml_context,
                 embed_encoder=None,
                 segment_transducer=None,
                 learn_segmentation=True,
                 reinforcement_param=None,
                 length_prior=3.5,
                 learn_delete=False,
                 length_prior_alpha=1.0,
                 use_baseline=True,
                 segmentation_warmup_counter=None):
        register_handler(self)
        model = yaml_context.dynet_param_collection.param_col
        # The Embed Encoder transduces the embedding vectors to a sequence of vector
        self.embed_encoder = embed_encoder
        # The Segment transducer predict a category based on the collected vector
        self.segment_transducer = segment_transducer
        # The Segment Encoder decides whether to segment or not
        self.segment_transform = linear.Linear(
            input_dim=embed_encoder.hidden_dim,
            output_dim=3 if learn_delete else 2,
            model=model)
        # The baseline linear regression model
        self.baseline = linear.Linear(input_dim=embed_encoder.hidden_dim,
                                      output_dim=1,
                                      model=model)
        self.use_baseline = use_baseline
        # Whether to learn segmentation or not
        self.learn_segmentation = learn_segmentation
        # Whether to learn deletion or not
        self.learn_delete = learn_delete
        # Other Parameters
        self.length_prior = length_prior
        self.length_prior_alpha = length_prior_alpha
        self.lmbd = reinforcement_param

        # States of the object
        self.train = True
        self.warmup_counter = 0
        self.segmentation_warmup_counter = segmentation_warmup_counter
Exemple #4
0
 def __init__(self,
              evaluation_metric=None,
              sample_length=50,
              use_baseline=False,
              decoder_hidden_dim=Ref("exp_global.default_layer_dim")):
     self.sample_length = sample_length
     if evaluation_metric is None:
         self.evaluation_metric = xnmt.evaluator.BLEUEvaluator(ngram=4,
                                                               smooth=1)
     else:
         self.evaluation_metric = evaluation_metric
     self.use_baseline = use_baseline
     if self.use_baseline:
         self.baseline = linear.Linear(input_dim=decoder_hidden_dim,
                                       output_dim=1)
Exemple #5
0
    def __init__(self,
                 evaluation_metric=None,
                 sample_length=50,
                 use_baseline=False,
                 inv_eval=True,
                 decoder_hidden_dim=Ref("exp_global.default_layer_dim"),
                 baseline=None):
        self.use_baseline = use_baseline
        self.inv_eval = inv_eval
        if evaluation_metric is None:
            self.evaluation_metric = xnmt.evaluator.FastBLEUEvaluator(ngram=4,
                                                                      smooth=1)
        else:
            self.evaluation_metric = evaluation_metric

        if self.use_baseline:
            self.baseline = self.add_serializable_component(
                "baseline", baseline,
                lambda: linear.Linear(input_dim=decoder_hidden_dim,
                                      output_dim=1))