Exemple #1
0
def main(overwrite_args=None):

    with tee.Tee(), tee.Tee(error=True):
        argparser = argparse.ArgumentParser()
        argparser.add_argument("--dynet-mem", type=str)
        argparser.add_argument("--dynet-seed",
                               type=int,
                               help="set random seed for DyNet and XNMT.")
        argparser.add_argument("--dynet-autobatch", type=int)
        argparser.add_argument("--dynet-devices", type=str)
        argparser.add_argument("--dynet-viz",
                               action='store_true',
                               help="use visualization")
        argparser.add_argument("--dynet-gpu",
                               action='store_true',
                               help="use GPU acceleration")
        argparser.add_argument("--dynet-gpu-ids", type=int)
        argparser.add_argument("--dynet-gpus", type=int)
        argparser.add_argument("--dynet-weight-decay", type=float)
        argparser.add_argument("--dynet-profiling", type=int)
        argparser.add_argument("--settings",
                               type=str,
                               default="standard",
                               help="settings (standard, debug, or unittest)"
                               "must be given in '=' syntax, e.g."
                               " --settings=standard")
        argparser.add_argument("experiments_file")
        argparser.add_argument("experiment_name",
                               nargs='*',
                               help="Run only the specified experiments")
        argparser.set_defaults(generate_doc=False)
        args = argparser.parse_args(overwrite_args)

        if args.dynet_seed:
            random.seed(args.dynet_seed)
            np.random.seed(args.dynet_seed)

        if args.dynet_gpu:
            if settings.CHECK_VALIDITY:
                settings.CHECK_VALIDITY = False
                log_preamble(
                    "disabling CHECK_VALIDITY because it is not supported on GPU currently",
                    logging.WARNING)

        config_experiment_names = YamlPreloader.experiment_names_from_file(
            args.experiments_file)

        results = []

        # Check ahead of time that all experiments exist, to avoid bad surprises
        experiment_names = args.experiment_name or config_experiment_names

        if args.experiment_name:
            nonexistent = set(experiment_names).difference(
                config_experiment_names)
            if len(nonexistent) != 0:
                raise Exception("Experiments {} do not exist".format(",".join(
                    list(nonexistent))))

        log_preamble(
            f"running XNMT revision {tee.get_git_revision()} on {socket.gethostname()} on {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
        )
        for experiment_name in experiment_names:

            ParamManager.init_param_col()

            uninitialized_exp_args = YamlPreloader.preload_experiment_from_file(
                args.experiments_file, experiment_name)

            logger.info(f"=> Running {experiment_name}")

            glob_args = uninitialized_exp_args.data.exp_global
            log_file = glob_args.log_file

            if os.path.isfile(log_file) and not settings.OVERWRITE_LOG:
                logger.warning(
                    f"log file {log_file} already exists, skipping experiment; please delete log file by hand if you want to overwrite it "
                    f"(or activate OVERWRITE_LOG, by either specifying an environment variable as OVERWRITE_LOG=1, "
                    f"or specifying --settings=debug, or changing xnmt.settings.Standard.OVERWRITE_LOG manually)"
                )
                continue

            tee.set_out_file(log_file)

            model_file = glob_args.model_file

            uninitialized_exp_args.data.exp_global.commandline_args = args

            # Create the model
            experiment = initialize_if_needed(uninitialized_exp_args)
            ParamManager.param_col.model_file = experiment.exp_global.model_file
            ParamManager.param_col.save_num_checkpoints = experiment.exp_global.save_num_checkpoints
            ParamManager.populate()

            # Run the experiment
            eval_scores = experiment(save_fct=lambda: save_to_file(
                model_file, experiment, ParamManager.param_col))
            results.append((experiment_name, eval_scores))
            print_results(results)

            tee.unset_out_file()
def main(overwrite_args: Optional[Sequence[str]] = None) -> None:

    with tee.Tee(), tee.Tee(error=True):
        argparser = argparse.ArgumentParser()
        utils.add_backend_argparse(argparser)
        argparser.add_argument("--settings",
                               type=str,
                               default="standard",
                               help="settings (standard, debug, or unittest)"
                               "must be given in '=' syntax, e.g."
                               " --settings=standard")
        argparser.add_argument(
            "--resume",
            action='store_true',
            help="whether a saved experiment is being resumed, and"
            "locations of output files should be re-used.")
        argparser.add_argument("--backend",
                               type=str,
                               default="dynet",
                               help="backend (dynet or torch)")
        argparser.add_argument("experiments_file")
        argparser.add_argument("experiment_name",
                               nargs='*',
                               help="Run only the specified experiments")
        argparser.set_defaults(generate_doc=False)
        args = argparser.parse_args(overwrite_args)

        if xnmt.backend_dynet and args.dynet_seed: args.seed = args.dynet_seed
        if getattr(args, "seed", None):
            random.seed(args.seed)
            np.random.seed(args.seed)
            if xnmt.backend_torch: torch.manual_seed(0)

        if xnmt.backend_dynet and args.dynet_gpu and settings.CHECK_VALIDITY:
            settings.CHECK_VALIDITY = False
            log_preamble(
                "disabling CHECK_VALIDITY because it is not supported in the DyNet/GPU setting",
                logging.WARNING)

        config_experiment_names = YamlPreloader.experiment_names_from_file(
            args.experiments_file)

        results = []

        # Check ahead of time that all experiments exist, to avoid bad surprises
        experiment_names = args.experiment_name or config_experiment_names

        if args.experiment_name:
            nonexistent = set(experiment_names).difference(
                config_experiment_names)
            if len(nonexistent) != 0:
                raise Exception("Experiments {} do not exist".format(",".join(
                    list(nonexistent))))

        log_preamble(
            f"running XNMT revision {tee.get_git_revision()} on {socket.gethostname()} with {'DyNet' if xnmt.backend_dynet else 'PyTorch'} on {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
        )
        for experiment_name in experiment_names:

            ParamManager.init_param_col()

            uninitialized_exp_args = YamlPreloader.preload_experiment_from_file(
                args.experiments_file, experiment_name, resume=args.resume)

            logger.info(f"=> Running {experiment_name}")

            glob_args = uninitialized_exp_args.data.exp_global
            log_file = glob_args.log_file

            if not settings.OVERWRITE_LOG:
                log_files_exist = []
                if os.path.isfile(log_file): log_files_exist.append(log_file)
                if os.path.isdir(log_file + ".tb"):
                    log_files_exist.append(log_file + ".tb/")
                if log_files_exist:
                    logger.warning(
                        f"log file(s) {' '.join(log_files_exist)} already exists, skipping experiment; "
                        f"please delete log file by hand if you want to overwrite it "
                        f"(or activate OVERWRITE_LOG, by either specifying an environment variable OVERWRITE_LOG=1, "
                        f"or specifying --settings=debug, or changing xnmt.settings.Standard.OVERWRITE_LOG manually)"
                    )
                    continue
            elif settings.OVERWRITE_LOG and os.path.isdir(log_file + ".tb"):
                shutil.rmtree(
                    log_file + ".tb/"
                )  # remove tensorboard logs from previous run that is being overwritten

            tee.set_out_file(log_file, exp_name=experiment_name)

            try:

                model_file = glob_args.model_file

                uninitialized_exp_args.data.exp_global.commandline_args = vars(
                    args)

                # Create the model
                experiment = initialize_if_needed(uninitialized_exp_args)
                ParamManager.param_col.model_file = experiment.exp_global.model_file
                ParamManager.param_col.save_num_checkpoints = experiment.exp_global.save_num_checkpoints
                ParamManager.populate()

                # Run the experiment
                eval_scores = experiment(
                    save_fct=lambda: save_to_file(model_file, experiment))
                results.append((experiment_name, eval_scores))
                print_results(results)

            except Exception as e:
                file_logger.error(traceback.format_exc())
                raise e
            finally:
                tee.unset_out_file()