def evaluate(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True print ('The image is {:}'.format(args.image)) print ('The model is {:}'.format(args.model)) snapshot = Path(args.model) assert snapshot.exists(), 'The model path {:} does not exist' print ('The face bounding box is {:}'.format(args.face)) assert len(args.face) == 4, 'Invalid face input : {:}'.format(args.face) snapshot = torch.load(snapshot) # General Data Argumentation mean_fill = tuple( [int(x*255) for x in [0.485, 0.456, 0.406] ] ) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) param = snapshot['args'] import pdb; pdb.set_trace() eval_transform = transforms.Compose([transforms.PreCrop(param.pre_crop_expand), transforms.TrainScale2WH((param.crop_width, param.crop_height)), transforms.ToTensor(), normalize]) model_config = load_configure(param.model_config, None) dataset = Dataset(eval_transform, param.sigma, model_config.downsample, param.heatmap_type, param.data_indicator) dataset.reset(param.num_pts) net = obtain_model(model_config, param.num_pts + 1) net = net.cuda() weights = remove_module_dict(snapshot['detector']) net.load_state_dict(weights) print ('Prepare input data') [image, _, _, _, _, _, cropped_size], meta = dataset.prepare_input(args.image, args.face) inputs = image.unsqueeze(0).cuda() # network forward with torch.no_grad(): batch_heatmaps, batch_locs, batch_scos = net(inputs) # obtain the locations on the image in the orignial size cpu = torch.device('cpu') np_batch_locs, np_batch_scos, cropped_size = batch_locs.to(cpu).numpy(), batch_scos.to(cpu).numpy(), cropped_size.numpy() locations, scores = np_batch_locs[0,:-1,:], np.expand_dims(np_batch_scos[0,:-1], -1) scale_h, scale_w = cropped_size[0] * 1. / inputs.size(-2) , cropped_size[1] * 1. / inputs.size(-1) locations[:, 0], locations[:, 1] = locations[:, 0] * scale_w + cropped_size[2], locations[:, 1] * scale_h + cropped_size[3] prediction = np.concatenate((locations, scores), axis=1).transpose(1,0) print ('the coordinates for {:} facial landmarks:'.format(param.num_pts)) for i in range(param.num_pts): point = prediction[:, i] print ('the {:02d}/{:02d}-th point : ({:.1f}, {:.1f}), score = {:.2f}'.format(i, param.num_pts, float(point[0]), float(point[1]), float(point[2]))) if args.save: resize = 512 image = draw_image_by_points(args.image, prediction, 2, (255, 0, 0), args.face, resize) image.save(args.save) print ('save the visualization results into {:}'.format(args.save)) else: print ('ignore the visualization procedure')
from utils import get_model_infos from config_utils import load_configure model_path = "/mnt/be6f1b04-2ec3-4579-a72a-8a5451087c69/Repos/landmark-detection/SBR/sbr_model.pth" print('The model is {:}'.format(model_path)) snapshot = Path(model_path) assert snapshot.exists(), 'The model path {:} does not exist' snapshot = torch.load(snapshot) mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) param = snapshot['args'] eval_transform = transforms.Compose([ transforms.PreCrop(param.pre_crop_expand), transforms.TrainScale2WH((param.crop_width, param.crop_height)), transforms.ToTensor(), normalize ]) model_config = load_configure(param.model_config, None) dataset = Dataset(eval_transform, param.sigma, model_config.downsample, param.heatmap_type, param.data_indicator) dataset.reset(param.num_pts) net = obtain_model(model_config, param.num_pts + 1) net = net.cuda() #import pdb; pdb.set_trace() try: weights = remove_module_dict(snapshot['detector']) except: weights = remove_module_dict(snapshot['state_dict'])
def evaluate(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True model_name = os.path.split(args.model)[-1] onnx_name = os.path.splitext(model_name)[0] + ".onnx" print('The model is {:}'.format(args.model)) print('Model name is {:} \nOutput onnx file is {:}'.format( model_name, onnx_name)) snapshot = Path(args.model) assert snapshot.exists(), 'The model does not exist {:}' #print('Output onnx file is {:}'.format(onnx_name)) snapshot = torch.load(snapshot) # General Data Argumentation mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) param = snapshot['args'] print(param) eval_transform = transforms.Compose([ transforms.PreCrop(param.pre_crop_expand), transforms.TrainScale2WH((param.crop_width, param.crop_height)), transforms.ToTensor(), normalize ]) model_config = load_configure(param.model_config, None) print(model_config) dataset = Dataset(eval_transform, param.sigma, model_config.downsample, param.heatmap_type, param.data_indicator) dataset.reset(param.num_pts) net = obtain_model(model_config, param.num_pts + 1) net = net weights = remove_module_dict(snapshot['state_dict']) nu_weights = {} for key, val in weights.items(): nu_weights[key.split('detector.')[-1]] = val print(key.split('detector.')[-1]) weights = nu_weights net.load_state_dict(weights) input_name = ['image_in'] output_name = ['locs', 'scors', 'crap'] im = cv2.imread('Menpo51220/val/0000018.jpg') imshape = im.shape face = [0, 0, imshape[0], imshape[1]] [image, _, _, _, _, _, cropped_size], meta = dataset.prepare_input('Menpo51220/val/0000018.jpg', face) dummy_input = torch.randn(1, 3, 256, 256, requires_grad=True, dtype=torch.float32) input(dummy_input.dtype) #input('imcrap') inputs = image.unsqueeze(0) out_in = inputs.data.numpy() with open('pick.pick', 'wb') as crap: pickle.dump(out_in, crap) with torch.no_grad(): batch_locs, batch_scos, heatmap = net(inputs) torch.onnx.export(net.cuda(), dummy_input.cuda(), onnx_name, verbose=True, input_names=input_name, output_names=output_name, export_params=True) print(batch_locs) print(batch_scos) print(heatmap) cpu = torch.device('cpu') np_batch_locs, np_batch_scos, cropped_size = batch_locs.to( cpu).numpy(), batch_scos.to(cpu).numpy(), cropped_size.numpy() locations = np_batch_locs[:-1, :] scores = np.expand_dims(np_batch_scos[:-1], -1) scale_h, scale_w = cropped_size[0] * 1. / inputs.size( -2), cropped_size[1] * 1. / inputs.size(-1) locations[:, 0], locations[:, 1] = locations[:, 0] * scale_w, locations[:, 1] * scale_h prediction = np.concatenate((locations, scores), axis=1).transpose(1, 0) pred_pts = np.transpose(prediction, [1, 0]) pred_pts = pred_pts[:, :-1] #print(pred_pts) sim = draw_pts(im, pred_pts=pred_pts, get_l1e=False) cv2.imwrite('py_0.jpg', sim)
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True prepare_seed(args.rand_seed) logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file()) logger = Logger(args.save_path, logstr) logger.log('Main Function with logger : {:}'.format(logger)) logger.log('Arguments : -------------------------------') for name, value in args._get_kwargs(): logger.log('{:16} : {:}'.format(name, value)) logger.log("Python version : {}".format(sys.version.replace('\n', ' '))) logger.log("Pillow version : {}".format(PIL.__version__)) logger.log("PyTorch version : {}".format(torch.__version__)) logger.log("cuDNN version : {}".format(torch.backends.cudnn.version())) # General Data Argumentation mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format( args.arg_flip, args.rotate_max) train_transform = [transforms.PreCrop(args.pre_crop_expand)] train_transform += [ transforms.TrainScale2WH((args.crop_width, args.crop_height)) ] train_transform += [ transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max) ] #if args.arg_flip: # train_transform += [transforms.AugHorizontalFlip()] if args.rotate_max: train_transform += [transforms.AugRotate(args.rotate_max)] train_transform += [ transforms.AugCrop(args.crop_width, args.crop_height, args.crop_perturb_max, mean_fill) ] train_transform += [transforms.ToTensor(), normalize] train_transform = transforms.Compose(train_transform) eval_transform = transforms.Compose([ transforms.PreCrop(args.pre_crop_expand), transforms.TrainScale2WH((args.crop_width, args.crop_height)), transforms.ToTensor(), normalize ]) assert ( args.scale_min + args.scale_max ) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format( args.scale_min, args.scale_max, args.scale_eval) # Model Configure Load model_config = load_configure(args.model_config, logger) args.sigma = args.sigma * args.scale_eval logger.log('Real Sigma : {:}'.format(args.sigma)) # Training Dataset train_data = VDataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator, args.video_parser) train_data.load_list(args.train_lists, args.num_pts, True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # Evaluation Dataloader eval_loaders = [] if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_vdata.load_list(eval_vlist, args.num_pts, True) eval_vloader = torch.utils.data.DataLoader( eval_vdata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_idata.load_list(eval_ilist, args.num_pts, True) eval_iloader = torch.utils.data.DataLoader( eval_idata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) # Define network lk_config = load_configure(args.lk_config, logger) logger.log('model configure : {:}'.format(model_config)) logger.log('LK configure : {:}'.format(lk_config)) net = obtain_model(model_config, lk_config, args.num_pts + 1) assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format( model_config.downsample, net.downsample) logger.log("=> network :\n {}".format(net)) logger.log('Training-data : {:}'.format(train_data)) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format( i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}'.format(args)) opt_config = load_configure(args.opt_config, logger) if hasattr(net, 'specify_parameter'): net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay) else: net_param_dict = net.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) net, criterion = net.cuda(), criterion.cuda() net = torch.nn.DataParallel(net) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) assert last_info['epoch'] == checkpoint[ 'epoch'], 'Last-Info is not right {:} vs {:}'.format( last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done".format( logger.last_info(), checkpoint['epoch'])) elif args.init_model is not None: init_model = Path(args.init_model) assert init_model.exists(), 'init-model {:} does not exist'.format( init_model) checkpoint = torch.load(init_model) checkpoint = remove_module_dict(checkpoint['state_dict'], True) net.module.detector.load_state_dict(checkpoint) logger.log("=> initialize the detector : {:}".format(init_model)) start_epoch = 0 else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch = 0 detector = torch.nn.DataParallel(net.module.detector) eval_results = eval_all(args, eval_loaders, detector, criterion, 'start-eval', logger, opt_config) if args.eval_once: logger.log("=> only evaluate the model once") logger.close() return # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): scheduler.step() need_time = convert_secs2time( epoch_time.avg * (opt_config.epochs - epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log( '\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'. format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss = train(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config, lk_config, epoch >= lk_config.start) # log the results logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}'.format( time_string(), epoch_str, train_loss)) # remember best prec@1 and save checkpoint save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'arch': model_config.arch, 'state_dict': net.state_dict(), 'detector': detector.state_dict(), 'scheduler': scheduler.state_dict(), 'optimizer': optimizer.state_dict(), }, logger.path('model') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) last_info = save_checkpoint( { 'epoch': epoch, 'last_checkpoint': save_path, }, logger.last_info(), logger) eval_results = eval_all(args, eval_loaders, detector, criterion, epoch_str, logger, opt_config) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.close()
#import caffe2.python.onnx as onnx import onnx from pathlib import Path import sys lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) assert sys.version_info.major == 3, 'Please upgrade from {:} to Python 3.x'.format(sys.version_info) from datasets import GeneralDataset as Dataset from xvision import transforms print('ineval') # Load the ONNX model mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) model = onnx.load("cpm_vgg16-epoch-008-050.onnx") pre_crop_expand=0.2 # Check that the IR is well formed onnx.checker.check_model(model) # Print a human readable representation of the graph print(onnx.helper.printable_graph(model.graph)) #rep = backend.prepare(model, device="CUDA:0") eval_transform = transforms.Compose( [transforms.PreCrop(pre_crop_expand), transforms.TrainScale2WH((256, 256)), transforms.ToTensor(), normalize]) dataset = Dataset(eval_transform, 4.0, 8, 'gaussian', '300W-68')
def evaluate(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True print('The image is {:}'.format(args.image)) print('The model is {:}'.format(args.model)) snapshot = Path(args.model) assert snapshot.exists(), 'The model path {:} does not exist' snapshot = torch.load(snapshot) # General Data Argumentation mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) param = snapshot['args'] eval_transform = transforms.Compose([ transforms.PreCrop(param.pre_crop_expand), transforms.TrainScale2WH((param.crop_width, param.crop_height)), transforms.ToTensor(), normalize ]) model_config = load_configure(param.model_config, None) dataset = Dataset(eval_transform, param.sigma, model_config.downsample, param.heatmap_type, param.data_indicator) dataset.reset(param.num_pts) net = obtain_model(model_config, param.num_pts + 1) net = net.cuda() weights = remove_module_dict(snapshot['state_dict']) nu_weights = {} for key, val in weights.items(): nu_weights[key.split('detector.')[-1]] = val print(key.split('detector.')[-1]) weights = nu_weights net.load_state_dict(weights) print('Prepare input data') l1 = [] record_writer = Collection_engine.produce_generator() total_images = len(images) for im_ind, aimage in enumerate(images): progressbar(im_ind, total_images) pts_name = os.path.splitext(aimage)[0] + '.pts' pts_full = _pts_path_ + pts_name gtpts = get_pts(pts_full, 90) aim = _image_path + aimage args.image = aim im = cv2.imread(aim) imshape = im.shape args.face = [0, 0, imshape[0], imshape[1]] [image, _, _, _, _, _, cropped_size], meta = dataset.prepare_input(args.image, args.face) inputs = image.unsqueeze(0).cuda() # network forward with torch.no_grad(): batch_heatmaps, batch_locs, batch_scos = net(inputs) # obtain the locations on the image in the orignial size cpu = torch.device('cpu') np_batch_locs, np_batch_scos, cropped_size = batch_locs.to( cpu).numpy(), batch_scos.to(cpu).numpy(), cropped_size.numpy() locations, scores = np_batch_locs[0, :-1, :], np.expand_dims( np_batch_scos[0, :-1], -1) scale_h, scale_w = cropped_size[0] * 1. / inputs.size( -2), cropped_size[1] * 1. / inputs.size(-1) locations[:, 0], locations[:, 1] = locations[:, 0] * scale_w + cropped_size[ 2], locations[:, 1] * scale_h + cropped_size[3] prediction = np.concatenate((locations, scores), axis=1).transpose(1, 0) #print ('the coordinates for {:} facial landmarks:'.format(param.num_pts)) for i in range(param.num_pts): point = prediction[:, i] #print ('the {:02d}/{:02d}-th point : ({:.1f}, {:.1f}), score = {:.2f}'.format(i, param.num_pts, float(point[0]), float(point[1]), float(point[2]))) if args.save: args.save = _output_path + aimage resize = 512 #image = draw_image_by_points(args.image, prediction, 2, (255, 0, 0), args.face, resize) #sim, l1e =draw_pts(im, gt_pts=gtpts, pred_pts=prediction, get_l1e=True) #print(np.mean(l1e)) #l1.append(np.mean(l1e)) pred_pts = np.transpose(prediction, [1, 0]) pred_pts = pred_pts[:, :-1] record_writer.consume_data(im, gt_pts=gtpts, pred_pts=pred_pts, name=aimage) #cv2.imwrite(_output_path+aimage, sim) #image.save(args.save) #print ('save the visualization results into {:}'.format(args.save)) else: print('ignore the visualization procedure') record_writer.post_process() record_writer.generate_output(output_path=_output_path, epochs=50, name='Supervision By Registration')
def evaluate(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True print('The model is {:}'.format(args.model)) snapshot = Path(args.model) assert snapshot.exists(), 'The model path {:} does not exist' snapshot = torch.load(snapshot) # General Data Argumentation mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) param = snapshot['args'] eval_transform = transforms.Compose([ transforms.PreCrop(param.pre_crop_expand), transforms.TrainScale2WH((param.crop_width, param.crop_height)), transforms.ToTensor(), normalize ]) model_config = load_configure(param.model_config, None) dataset = Dataset(eval_transform, param.sigma, model_config.downsample, param.heatmap_type, param.data_indicator) dataset.reset(param.num_pts) net = obtain_model(model_config, param.num_pts + 1) net = net.cuda() weights = remove_module_dict(snapshot['state_dict']) nu_weights = {} for key, val in weights.items(): nu_weights[key.split('detector.')[-1]] = val print(key.split('detector.')[-1]) weights = nu_weights net.load_state_dict(weights) print('Prepare input data') images = os.listdir(args.image_path) images = natsort.natsorted(images) total_images = len(images) for im_ind, aimage in enumerate(images): progressbar(im_ind, total_images) #aim = os.path.join(args.image_path, aimage) aim = '0.jpg' args.image = aim im = cv2.imread(aim) imshape = im.shape print(imshape) input('crap12') args.face = [0, 0, imshape[0], imshape[1]] [image, _, _, _, _, _, cropped_size], meta = dataset.prepare_input(args.image, args.face) inputs = image.unsqueeze(0).cuda() scale_h, scale_w = cropped_size[0] * 1. / inputs.size( -2), cropped_size[1] * 1. / inputs.size(-1) print(inputs.size(-2)) print(inputs.size(-1)) print(scale_w.data.numpy()) print(scale_h.data.numpy()) print(cropped_size.data.numpy()) input('crap') # network forward with torch.no_grad(): batch_locs, batch_scos = net(inputs) c_im = np.expand_dims(image.data.numpy(), 0) c_locs, c_scors = rep.run(c_im) # obtain the locations on the image in the orignial size cpu = torch.device('cpu') np_batch_locs, np_batch_scos, cropped_size = batch_locs.to( cpu).numpy(), batch_scos.to(cpu).numpy(), cropped_size.numpy() locations, scores = np_batch_locs[0, :-1, :], np.expand_dims( np_batch_scos[0, :-1], -1) locations[:, 0], locations[:, 1] = locations[:, 0] * scale_w + cropped_size[2], locations[:, 1] * scale_h + \ cropped_size[3] prediction = np.concatenate((locations, scores), axis=1).transpose(1, 0) c_locations = c_locs[0, :-1, :] c_locations[:, 0], c_locations[:, 1] = c_locations[:, 0] * scale_w + cropped_size[2], c_locations[:, 1] * scale_h + \ cropped_size[3] c_scores = np.expand_dims(c_scors[0, :-1], -1) c_pred_pts = np.concatenate((c_locations, c_scores), axis=1).transpose(1, 0) pred_pts = np.transpose(prediction, [1, 0]) pred_pts = pred_pts[:, :-1] c_pred_pts = np.transpose(c_pred_pts, [1, 0]) c_pred_pts = c_pred_pts[:, :-1] print(c_scors, '\n\n\n') print(np_batch_scos) print(c_scors - np_batch_scos) if args.save: json_file = os.path.splitext(aimage)[0] + '.jpg' save_path = os.path.join(args.save, 'caf' + json_file) save_path2 = os.path.join(args.save, 'py_' + json_file) sim2 = draw_pts(im, pred_pts=pred_pts, get_l1e=False) sim = draw_pts(im, pred_pts=c_pred_pts, get_l1e=False) #print(pred_pts) cv2.imwrite(save_path, sim) cv2.imwrite(save_path2, sim2) input('save1') # image.save(args.save) # print ('save the visualization results into {:}'.format(args.save)) else: print('ignore the visualization procedure')