def is_not_yaml(check_obj): check_obj.is_string() try: yaml.loads(check_obj._val) raise CheckError('{} is valid YAML'.format(check_obj._val)) except ValueError: return check_obj
def is_not_yaml(self): self.is_string() try: yaml.loads(self._val) raise CheckError('{} is valid YAML'.format(self._val)) except ValueError: return self
def get_yaml(fh): """YAML to object with input type detection""" import yaml if isinstance(fh, file): return yaml.load(fh) elif isinstance(fh, str): return yaml.loads(fh)
def load_config_file(self, config_file): if not os.path.exists(config_file): raise Exception("Path to config file do not exists on disk...") with open(config_file, "r") as stream: data = stream.read() if not data: raise Exception("No data in config file : {}".format(config_file)) # Try first with yaml as that is default config lagn # If yaml loading failed then try json loading try: data_tree = yaml.loads(data) except Exception: try: data_tree = json.loads(data) except Exception: raise Exception( "Unable to load data as yaml or json from config file : {}" .format(config_file)) log.debug("Loading default data from default config file : {}".format( config_file)) # If data was loaded into python datastructure then load it into the config tree self.merge_data_tree(data_tree)
def to_yaml_string(self, pb_msg, project_ns=False): """ Serialize a protobuf message into YAML Arguments: pb_msg - A GI-protobuf object of type provided into constructor project_ns - Need the desc in project namespace, required for posting to Restconf as part of onboarding Returns: A YAML string representing the protobuf message Raises: SerializationError - Message could not be serialized TypeError - Incorrect protobuf type provided """ self._log.debug("Convert desc to yaml (ns:{}): {}".format( project_ns, pb_msg.as_dict())) try: desc_msg = self.to_desc_msg(pb_msg, not project_ns) yaml_str = desc_msg.to_yaml(self.model) if project_ns: # Remove rw-project:project top level element dic = yaml.loads(yaml_str) ystr = yaml.dump(dic[NS_PROJECT][0]) else: ystr = yaml_str except Exception as e: self._log.exception("Exception converting to yaml: {}".format(e)) raise SerializationError(e) return ystr
def yaml2dict(content): try: return yaml.loads(content) except yaml.YAMLError as e: msg_sche = 'your content {} is not in the right yaml ' \ 'style and details are {}' error(__file__, msg_sche.format(content, e))
def testCreateAPIsMapFile(self): config = yaml.loads( textwrap.dedent("""\ orange: v1: discovery: organge_v1.json default: True v2: discovery: organge_v2.json banana: v2beta: discovery: banana_v2beta.json v2_staging: version: v2 discovery: banana_v2_staging.json default: True pear: v7_test: discovery: pear_v7_test.json """)) with files.TemporaryDirectory() as tmp_dir: regen.GenerateApiMap(tmp_dir, 'fruits', config) content = self.GetFileContent(os.path.join(tmp_dir, 'api_map.py')) self.assertEquals( self.GetFileContent( os.path.join(os.path.dirname(__file__), 'testdata', 'api_map_sample.txt')), content)
def svc_id(svc_recs, rec): _id = None for key, val in svc_recs.items(): if loads(key).items() <= rec.items(): assert _id is None _id = val return _id
def load_config_file(self, config_file): if not os.path.exists(config_file): raise Exception("Path to config file do not exists on disk...") with open(config_file, "r") as stream: data = stream.read() if not data: raise Exception("No data in config file : {}".format(config_file)) # Try first with yaml as that is default config lagn # If yaml loading failed then try json loading try: data_tree = yaml.loads(data) except Exception: try: data_tree = json.loads(data) except Exception: raise Exception("Unable to load data as yaml or json from" " config file : {}".format(config_file)) Log.debug("Loading default data from default config file : {}".format(config_file)) # If data was loaded into python datastructure then load it into the # config tree self.merge_data_tree(data_tree)
def testCreateAPIsMapFile(self): config = yaml.loads( textwrap.dedent( """\ orange: v1: discovery: organge_v1.json default: True v2: discovery: organge_v2.json banana: v2beta: discovery: banana_v2beta.json v2_staging: version: v2 discovery: banana_v2_staging.json default: True pear: v7_test: discovery: pear_v7_test.json """ ) ) with files.TemporaryDirectory() as tmp_dir: regen.GenerateApiMap(tmp_dir, "fruits", config) content = self.GetFileContent(os.path.join(tmp_dir, "api_map.py")) self.assertEquals( self.GetFileContent(os.path.join(os.path.dirname(__file__), "testdata", "api_map_sample.txt")), content )
def loadResultDefinition(fname): '''Deserialize `fname` appropriate to extension. Return the result.''' ext = fname.split('.')[-1] fstr = open(fname).read() if ext == 'json': return json.loads(fstr) elif ext == 'yaml': return yaml.loads(fstr)
def _load_schema_url(url): import urllib2 try: res = urllib2.urlopen(url) tables = res.read() except urllib2.URLError: raise SchemingException("Could not load %s" % url) return yaml.loads(tables, url)
def test_read_cities_data(): config = yaml.loads('src/configs/config.yaml') result = io.read_cities_data('br', config) assert isinstance(result, dict) for v in result.values(): assert isinstance(v, dict)
def decode_content_data(message): ''' Validate message and decode data from content according to mime-type. Parameters ---------- message : dict One of the message types defined in :data:`MESSAGE_SCHEMA`. Returns ------- object Return deserialized object from ``content['data']`` field of message. Raises ------ RuntimeError If ``content['error']`` field is set. ''' validate(message) error = message['content'].get('error', None) if error is not None: raise RuntimeError(error) mime_type = 'application/python-pickle' transfer_encoding = 'BASE64' metadata = message['content'].get('metadata', None) if metadata is not None: mime_type = metadata.get('mime_type', mime_type) transfer_encoding = metadata.get('transfer_encoding', transfer_encoding) data = message['content'].get('data', None) if data is None: return None # If content data was base64 encoded, decode it. # # [1]: https://www.w3.org/Protocols/rfc1341/5_Content-Transfer-Encoding.html if transfer_encoding == 'BASE64': data = base64.b64decode(data) if mime_type == 'application/python-pickle': # Pickle object. return pickle.loads(data) elif mime_type == 'application/x-yaml': return yaml.loads(data) elif mime_type == 'application/json': return json.loads(data) elif mime_type in ('application/octet-stream', 'text/plain'): return data else: raise ValueError('Unrecognized mime-type: %s' % mime_type)
def query(ctx, input, output, context, query_file): """ Run an MQL query and store the results. """ graph = ctx.obj['GRAPH'] for uri in input: load_dump(graph, ensure_uri(uri)) if query_file is not None: query = read_yaml_uri(ensure_uri(query_file)) else: query = yaml.loads(sys.stdin) save_query_json(graph, query, output, context_id=context)
def handle(self, *args, **options): for filename in args: with open(filename) as f: if filename.endswith('.json'): bug_dicts = simplejson.load(f) else: # assume YAML s = f.read() bug_dicts = yaml.loads(s) for bug_dict in bug_dicts: mysite.customs.core_bugimporters.import_one_bug_item(bug_dict)
def testGetAPIsMap(self): config = yaml.loads( textwrap.dedent( """\ orange: v1: discovery: organge_v1.json default: True v2: discovery: organge_v2.json banana: v2beta: discovery: banana_v2beta.json v2_staging: version: v2 discovery: banana_v2_staging.json default: True pear: v7_test: discovery: pear_v7_test.json """ ) ) expected_map = { "orange": { "v1": api_def.APIDef( "fruits.orange.v1.orange_v1_client.OrangeV1", "fruits.orange.v1.orange_v1_messages", True ), "v2": api_def.APIDef( "fruits.orange.v2.orange_v2_client.OrangeV2", "fruits.orange.v2.orange_v2_messages" ), }, "banana": { "v2beta": api_def.APIDef( "fruits.banana.v2beta.banana_v2beta_client.BananaV2beta", "fruits.banana.v2beta.banana_v2beta_messages", ), "v2_staging": api_def.APIDef( "fruits.banana.v2_staging.banana_v2_client.BananaV2", "fruits.banana.v2_staging.banana_v2_messages", True, ), }, "pear": { "v7_test": api_def.APIDef( "fruits.pear.v7_test.pear_v7_test_client.PearV7Test", "fruits.pear.v7_test.pear_v7_test_messages", True, ) }, } actual_map = regen._MakeApiMap("fruits", config) self.assertEquals(expected_map, actual_map)
def _make_call(self, call): resp = requests.request('GET', call) if resp.status_code != 200: return None else: data = resp.text if self.style == 'json': return json.loads(data) elif self.style == 'yaml': return yaml.loads(data) else: return data
def handle(self, *args, **options): for filename in args: with open(filename) as f: if filename.endswith('.json'): bug_dicts = json.load(f) elif filename.endswith('.jsonlines'): bug_dicts = jsonlines_decoder(f) else: # assume YAML s = f.read() bug_dicts = yaml.loads(s) for bug_dict in bug_dicts: _import_one(bug_dict)
def handle(self, *args, **options): for filename in args: with open(filename) as f: if filename.endswith('.json'): bug_dicts = simplejson.load(f) elif filename.endswith('.jsonlines'): bug_dicts = jsonlines_decoder(f) else: # assume YAML s = f.read() bug_dicts = yaml.loads(s) for bug_dict in bug_dicts: mysite.customs.core_bugimporters.import_one_bug_item(bug_dict)
def testGetAPIsMap(self): config = yaml.loads( textwrap.dedent("""\ orange: v1: discovery: organge_v1.json default: True v2: discovery: organge_v2.json banana: v2beta: discovery: banana_v2beta.json v2_staging: version: v2 discovery: banana_v2_staging.json default: True pear: v7_test: discovery: pear_v7_test.json """)) expected_map = { 'orange': { 'v1': api_def.APIDef('fruits.orange.v1.orange_v1_client.OrangeV1', 'fruits.orange.v1.orange_v1_messages', True), 'v2': api_def.APIDef('fruits.orange.v2.orange_v2_client.OrangeV2', 'fruits.orange.v2.orange_v2_messages') }, 'banana': { 'v2beta': api_def.APIDef( 'fruits.banana.v2beta.banana_v2beta_client.BananaV2beta', 'fruits.banana.v2beta.banana_v2beta_messages'), 'v2_staging': api_def.APIDef( 'fruits.banana.v2_staging.banana_v2_client.BananaV2', 'fruits.banana.v2_staging.banana_v2_messages', True) }, 'pear': { 'v7_test': api_def.APIDef( 'fruits.pear.v7_test.pear_v7_test_client.PearV7Test', 'fruits.pear.v7_test.pear_v7_test_messages', True) } } actual_map = regen._MakeApiMap('fruits', config) self.assertEquals(expected_map, actual_map)
def testGetAPIsMapNoDefaultsClientsForAPIs(self): config = yaml.loads( textwrap.dedent("""\ orange: v1: discovery: organge_v1.json v2: discovery: organge_v2.json """)) with self.assertRaises(Exception) as ctx: regen._MakeApiMap('fruits', config) msg = str(ctx.exception) self.assertEquals(msg, 'No default client versions found for [fig, lime]!')
def __init__(self, filename, title='Tk', prefer_tk=True, file_type='json'): self.prefer_tk = prefer_tk self.vars = {} if file_type == 'json': user_interface = json.load(open(filename)) if os.path.isfile( filename) else json.loads(filename) elif file_type == 'yaml': user_interface = yaml.load(open(filename)) if os.path.isfile( filename) else yaml.loads(filename) else: raise ValueError('Only json or yaml file definitions are' 'supported.') self.create_widgets(self, user_interface)
def __init__(self, filename, title='Tk', preferTk=True): """ Initialize a Tk root and created the UI from a JSON file. Returns the Tk root. """ # Needs to be done this way - because base class do not derive from # object :-( tkinter.Tk.__init__(self) self.preferTk = preferTk self.title(title) user_interface = yaml.load(open(filename)) if os.path.isfile( filename) else yaml.loads(filename) self.create_widgets(self, user_interface) super().__init__(filename, title, preferTk)
def getParsedSchemaFromYaml(model): """reads a JSON schema file in yaml format and returns the parsed dictionary from it Keyword arguments: model -- file name and path to the model to load or model content from stdin """ if __isHttpLoadableModel(model): with urllib.request.urlopen(model) as url: return yaml.loads(url.read().decode(), Loader=yaml.FullLoader) elif doesFileExist(model): # model is treaten as file to input with open(model) as json_schema: return yaml.load(json_schema, Loader=yaml.FullLoader) else: # model is treaten as string content to get parsed return yaml.load(model, Loader=yaml.FullLoader)
def testGetAPIsMapNoDefaultsClientsForAPIs(self): config = yaml.loads( textwrap.dedent( """\ orange: v1: discovery: organge_v1.json v2: discovery: organge_v2.json """ ) ) with self.assertRaises(Exception) as ctx: regen._MakeApiMap("fruits", config) msg = str(ctx.exception) self.assertEquals(msg, "No default client versions found for [fig, lime]!")
def jq_all(query, data_str, *args, **kwargs): """ Queries the nested data and returns all results as a list. Parameters ---------- data_str : str Nested data in Python dict's representation format. If must be loadable by ``yaml.safe_load()``. Returns ------- result : str String representation of the result list. """ try: return json.dumps(pyjq.all(query, yaml.loads(data_str)), *args, **kwargs) except Exception as e: return 'jq error: {} query: {!r} str: {!r}'.format(e, query, data_str)
def ucsdJsonParser(text): jsondict = None if text: try: jsondict = json.loads(text) except: pass # we're here because standard JSON parser failed to make sense of the input # try interpreting as YAML: try: jsondict = yaml.loads(text) except: pass # we're here because standard YAML parser failed to make sense of the input # try alternative JSON lib: try: jsondict = demjson.decode(text) except: pass # inconceivable! return jsondict
def __init__(self, data_or_file, shape): super(ZacSimulator, self).__init__() if isinstance(data_or_file, file): data = yaml.load(data_or_file) else: data = yaml.loads(data_or_file) self.sets = data["sets"] self.cells = self.sets.keys() self.strings = data["strings"] self.python_code = "# auto-generated code:\n" + data["python_code"] self.cpp_code = data["cpp_code"] if len(shape) == 1: shape = (shape[0], 1) self.shape = shape self.possible_values = self.sets self.stringy_subcells = [k for k, v in self.sets.iteritems() if isinstance(v[0], basestring)] self.neighbourhood = ZacNeighbourhood(data["neighbourhood"]) self.acc = SubcellAccessor(self.sets.keys()) self.computation = PasteComputation(self.cpp_code, self.python_code) self.border = BorderSizeEnsurer() if len(shape) == 1: self.loop = OneDimCellLoop() else: self.loop = TwoDimCellLoop() for k in self.sets.keys(): nconf_arr = np.zeros(shape, dtype=int) cconf_arr = np.zeros(shape, dtype=int) setattr(self, "cconf_%s" % k, cconf_arr) setattr(self, "nconf_%s" % k, nconf_arr) if k in self.stringy_subcells: val = [index for index, val in enumerate(self.strings) if val == self.sets[k][0]][0] cconf_arr[:] = val nconf_arr[:] = val self.stepfunc = StepFunc(self, self.loop, self.acc, self.neighbourhood, self.border, visitors=[self.computation]) self.stepfunc.gen_code()
def load(self, filePath, formatType=DETECT): self.config = {} self.formatType = formatType self.filePath = filePath if os.path.isfile(filePath): file = open(filePath).read() if self.formatType == self.DETECT: bname = os.path.basename(self.filePath) extension = os.path.splitext(bname)[0] try: self.formatType = self.formats[extension] except: return if self.formatType == self.JSON: self.config = json.loads(content) elif self.formatType == self.YAML: self.fixYamlIndexes(content) self.config = yaml.loads(content) elif self.formatType == self.PROPERTIES: self.config = Properties.loads(content)
def __init__(self, spec): self._stateMachine = self self._spec = spec if isinstance(spec, dict): # for testing and calling as a library self._stateMachineSpec = spec else: if self._spec.endswith("json"): self._stateMachineSpec = json.loads( open(self._spec, "r").read()) elif self._spec.endswith("yml"): self._stateMachineSpec = yaml.loads( open(self._spec, "r").read()) else: self._stateMachineSpec = {} # for incremantal construction self._input = {} self._output = {} self._state = {} # make instances of all inputs, outputs, and states for input in self._stateMachineSpec["Input"]: self._input[input] = Input( self._stateMachineSpec["Input"] [input]) # construct an instance with the document node for output in self._stateMachineSpec["Output"]: self._output[output] = Output( self._stateMachineSpec["Output"] [output]) # construct an instance with the document node for state in self._stateMachineSpec["State"]: self._state[state] = State( state, self._stateMachineSpec["State"][state], self._stateMachine ) # construct an instance with the name, the document node, and the state machine instance self._currentState = self._state[self._stateMachineSpec[ "CurrentState"]] # initialize the state machine to the provided state self._currentTime = 0 self._intervalStartTime = self._currentTime self._intervalTime = self._currentTime - self._intervalStartTime # wrap- and sign-safe interval compare
def load(self, file, configFormat = formats["detect"]): self.config = {} self.format = configFormat self.file = file content = file.read() if self.format == self.formats["detect"]: baseName = os.path.basename(self.file.name) extension = baseName.rsplit(".", 1)[1] if extension in self.formats: self.format = self.formats[extension] if self.format == self.formats["json"]: self.config = json.loads(content) elif self.format == self.formats["yaml"]: self.fixYamlIndexes(content) self.config = yaml.loads(content) elif self.format == self.formats["properties"]: self.config = Properties.loads(content) elif self.format == self.formats["toml"]: self.config = toml.loads(content) elif self.format == self.formats["ini"]: self.config = toml.loads(content)
def __init__(self, filename, title='Tk', prefer_tk=True, file_type='json'): """ Initialize a Tk root and created the UI from a JSON file. Returns the Tk root. """ # Needs to be done this way - because base class do not derive from # object :-( tkinter.Tk.__init__(self) self.prefer_tk = prefer_tk self.title(title) if file_type == 'json': user_interface = json.load(open(filename)) if os.path.isfile( filename) else json.loads(filename) elif file_type == 'yaml': user_interface = yaml.load(open(filename)) if os.path.isfile( filename) else yaml.loads(filename) else: raise ValueError('Only json or yaml file definitions are' 'supported.') self.create_widgets(self, user_interface)
import threading import RPi.GPIO as GPIO from cPickle import loads as load from cPickle import dumps as dump ## Settings with open('/etc/hydrobot/settings.yml','r') as f: settings = yaml.load(f.read()) ## Stored Procedures procedures = {} if os.path.isfile('/etc/hydrobot/procedures.yml'): with open('/etc/hydrobot/procedures.yml','r') as f: procedures = yaml.loads(f.read()) if os.path.isfile(settings['hub']['procedures file']): with open(settings['hub']['procedures file'],'r') as f: procedures = yaml.loads(f.read()) ## Node Role def node(): root_pattern = 'output::'+settings['node']['id']+'::' r = redis.StrictRedis(host=settings['hub']['host'],port=settings['hub']['port']) r.set('node::'+settings['node']['id'],dump(settings['node'])) pins = [] for i in settings['node']['pins']: pins.append(int(i.keys()[0])) for i in pins: print root_pattern+str(i)
def comment_data(self, data, verified=None, code_review=None): comment_message = yaml.loads(data) self.remote.comment_change(self.number, self.patchset_number, comment_message, verified=verified, code_review=code_review)
if extra_columns: logger.error("Your configuration names columns that don't exists in the database.") logger.error("These columns are: %s" % (extra_columns,)) sys.exit(1) def anonymize(config): sql = [] sql.extend(get_truncates(config)) sql.extend(get_deletes(config)) sql.extend(get_updates(config)) print "SET FOREIGN_KEY_CHECKS=0;" for stmt in sql: print stmt + ";" print "SET FOREIGN_KEY_CHECKS=1;" if __name__ == "__main__": db_file_names = sys.argv[1:] if not db_file_names: logger.error("Usage: %s config_file [config_file ...]", sys.argv[0]) for db_file_name in db_file_names: logger.info("Processing %s", db_file_name) with open(db_file_name) as db_file: cfg = yaml.loads(db_file) check_config(fg) anonymize(cfg)
def loads(obj: str): return loads(obj)
def load(file="testyaml.yaml"): with open(file, 'r+') as fr: return loads(file)
def loads(cls, s, *args, **kwargs): try: return yamllib.loads(s, *args, **kwargs) except Exception, e: raise TranscoderLoadException(e)
import json import redis import threading import RPi.GPIO as GPIO from cPickle import loads as load from cPickle import dumps as dump ## Settings with open('/etc/hydrobot/settings.yml', 'r') as f: settings = yaml.load(f.read()) ## Stored Procedures procedures = {} if os.path.isfile('/etc/hydrobot/procedures.yml'): with open('/etc/hydrobot/procedures.yml', 'r') as f: procedures = yaml.loads(f.read()) if os.path.isfile(settings['hub']['procedures file']): with open(settings['hub']['procedures file'], 'r') as f: procedures = yaml.loads(f.read()) ## Node Role def node(): root_pattern = 'output::' + settings['node']['id'] + '::' r = redis.StrictRedis(host=settings['hub']['host'], port=settings['hub']['port']) r.set('node::' + settings['node']['id'], dump(settings['node'])) pins = [] for i in settings['node']['pins']: pins.append(int(i.keys()[0])) for i in pins:
def from_yaml(cls, yml): if '\n' not in yml: with open(os.path.expanduser(yml)) as f: return cls.from_dict(yaml.load(f)) else: return cls.from_dict(yaml.loads(yml))
def optimize_variational_circuit( ansatz_specs, backend_specs, optimizer_specs, cost_function_specs, qubit_operator, initial_parameters="None", fixed_parameters="None", noise_model="None", device_connectivity="None", parameter_grid="None", parameter_values_list=None, constraint_operator="None", prior_expectation_values: Optional[str] = None, keep_history=False, thetas=None, ): warnings.warn( "optimize_variational_circuit will be depreciated in favor of optimize_ansatz_based_cost_function in steps/optimize.py in z-quantum-core.", DeprecationWarning, ) if initial_parameters != "None": initial_params = load_array(initial_parameters) else: initial_params = None if fixed_parameters != "None": fixed_params = load_array(fixed_parameters) else: fixed_params = None # Load qubit operator operator = load_qubit_operator(qubit_operator) if isinstance(ansatz_specs, str): ansatz_specs_dict = yaml.load(ansatz_specs, Loader=yaml.SafeLoader) else: ansatz_specs_dict = ansatz_specs if "WarmStartQAOAAnsatz" in ansatz_specs_dict["function_name"]: thetas = np.array(load_list(thetas)) ansatz = create_object(ansatz_specs_dict, cost_hamiltonian=operator, thetas=thetas) elif "QAOA" in ansatz_specs_dict["function_name"]: ansatz = create_object(ansatz_specs_dict, cost_hamiltonian=operator) else: ansatz = create_object(ansatz_specs_dict) # Load parameter grid if parameter_grid != "None": grid = load_parameter_grid(parameter_grid) else: grid = None # Load parameter values list if parameter_values_list is not None: parameter_values_list = load_array(parameter_values_list) # Load optimizer specs if isinstance(optimizer_specs, str): optimizer_specs_dict = yaml.load(optimizer_specs, Loader=yaml.SafeLoader) else: optimizer_specs_dict = optimizer_specs if (grid is not None and optimizer_specs_dict["function_name"] == "GridSearchOptimizer"): optimizer = create_object(optimizer_specs_dict, grid=grid) elif (parameter_values_list is not None and optimizer_specs_dict["function_name"] == "SearchPointsOptimizer"): optimizer = create_object(optimizer_specs_dict, parameter_values_list=parameter_values_list) else: optimizer = create_object(optimizer_specs_dict) # Load backend specs if isinstance(backend_specs, str): backend_specs_dict = yaml.load(backend_specs, Loader=yaml.SafeLoader) else: backend_specs_dict = backend_specs if noise_model != "None": backend_specs_dict["noise_model"] = load_noise_model(noise_model) if device_connectivity != "None": backend_specs_dict["device_connectivity"] = load_circuit_connectivity( device_connectivity) backend = create_object(backend_specs_dict) # Load cost function specs if isinstance(cost_function_specs, str): cost_function_specs_dict = yaml.load(cost_function_specs, Loader=yaml.SafeLoader) else: cost_function_specs_dict = cost_function_specs estimation_method_specs = cost_function_specs_dict.pop( "estimation_method_specs", None) if estimation_method_specs is not None: if isinstance(estimation_method_specs, str): estimation_method_specs = yaml.loads(estimation_method_specs) estimation_method = create_object(estimation_method_specs) else: estimation_method = estimate_expectation_values_by_averaging cost_function_specs_dict["estimation_method"] = estimation_method estimation_preprocessors_specs_list = cost_function_specs_dict.pop( "estimation_preprocessors_specs", None) if estimation_preprocessors_specs_list is not None: estimation_preprocessors = [] for estimation_preprocessor_specs in estimation_preprocessors_specs_list: if isinstance(estimation_preprocessor_specs, str): estimation_preprocessor_specs = yaml.loads( estimation_preprocessor_specs) estimation_preprocessors.append( create_object(estimation_preprocessor_specs)) cost_function_specs_dict[ "estimation_preprocessors"] = estimation_preprocessors cost_function_specs_dict["target_operator"] = operator cost_function_specs_dict["ansatz"] = ansatz cost_function_specs_dict["backend"] = backend cost_function_specs_dict["fixed_parameters"] = fixed_params cost_function = create_object(cost_function_specs_dict) if prior_expectation_values is not None: if isinstance(prior_expectation_values, str): cost_function.estimator.prior_expectation_values = load_expectation_values( prior_expectation_values) if constraint_operator != "None": constraint_op = load_qubit_operator(constraint_operator) constraints_cost_function_specs = yaml.load(cost_function_specs, Loader=yaml.SafeLoader) constraints_estimator_specs = constraints_cost_function_specs.pop( "estimator-specs", None) if constraints_estimator_specs is not None: constraints_cost_function_specs["estimator"] = create_object( constraints_estimator_specs) constraints_cost_function_specs["ansatz"] = ansatz constraints_cost_function_specs["backend"] = backend constraints_cost_function_specs["target_operator"] = constraint_op constraint_cost_function = create_object( constraints_cost_function_specs) constraint_cost_function_wrapper = ( lambda params: constraint_cost_function.evaluate(params).value) constraint_functions = ({ "type": "eq", "fun": constraint_cost_function_wrapper }, ) optimizer.constraints = constraint_functions opt_results = optimizer.minimize(cost_function, initial_params, keep_history) save_optimization_results(opt_results, "optimization-results.json") save_array(opt_results.opt_params, "optimized-parameters.json")
def validate(self): try: yaml.loads(self._content) except ValueError as err: return err
print(re.sub(r'\#(.*)', '_comment: $1', am)) print(re.sub(r'\#(.*)', '_comment: \\1', am)) print(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) get_ipython().magic('cd') get_ipython().magic('cd') get_ipython().magic('cd Desktop/') with open('print(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) with open('automoderator.yaml', 'w') as f: f.write(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) with open('automoderator.yaml', 'w', encoding='utf8') as f: f.write(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) am_obj = yaml.loads(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) import yaml am_obj = yaml.loads(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) am_obj = yaml.load_all(re.sub(r'\#\s*(.*)', '_comment: \\1', am)) am_obj list(am_obj) am_obj = yaml.load_all(re.sub(r'\#\s*(.*)', '_comment: "\\1"', am)) list(am_obj) am_obj = yaml.load_all(re.sub(r'\#\s*(.*)', '_comment: \'\\1\'', am)) list(am_obj) am_obj = list(yaml.load_all(re.sub(r'\#\s*(.*)', '_comment: \'\\1\'', am.replace('"', '\uff02')))) am_obj = yaml.load_all(re.sub(r'\#\s*(.*)', make_comment_tag, am)) def make_comment_tag(matchobj): print(matchobj) am_obj = yaml.load_all(re.sub(r'\#\s*(.*)', make_comment_tag, am)) def make_comment_tag(matchobj): return '_comment: ' + matchobj.group(1) am_obj = yaml.load_all(re.sub(r'\#\s*(.*)', make_comment_tag, am))