# draw_network(net.graph, filename = 'autoencoder.png') net.pretty_print() net.train(epochs=(10, 10), validate_after_epochs=1, training_accuracy=True, show_progress=True, early_terminate=True, verbose=verbose) if __name__ == '__main__': import sys dataset = None if len(sys.argv) > 1: if sys.argv[1] == 'create_dataset': from yann.special.datasets import cook_mnist_normalized_zero_mean as cook_mnist data = cook_mnist(verbose=2) dataset = data.dataset_location() else: dataset = sys.argv[1] else: print "provide dataset" if dataset is None: print " creating a new dataset to run through" from yann.special.datasets import cook_mnist_normalized_zero_mean as cook_mnist data = cook_mnist(verbose=2) dataset = data.dataset_location() autoencoder(dataset, verbose=2) convolutional_autoencoder(dataset, verbose=2)
# See how the network looks like. net.pretty_print() # Train the network. net.train() # Test for acccuracy. net.test() ## Boiler Plate ## if __name__ == '__main__': dataset = None import sys if len(sys.argv) > 1: if sys.argv[1] == 'create_dataset': from yann.special.datasets import cook_mnist data = cook_mnist(verbose=3) dataset = data.dataset_location() else: dataset = sys.argv[1] else: print "provide dataset" if dataset is None: print " creating a new dataset to run through" from yann.special.datasets import cook_mnist data = cook_mnist(verbose=3) dataset = data.dataset_location() log_reg(dataset)
early_terminate=True, verbose=verbose) net.test(verbose=verbose) ## Boiler Plate ## if __name__ == '__main__': import sys dataset = None if len(sys.argv) > 1: if sys.argv[1] == 'create_dataset': from yann.special.datasets import cook_cifar10 data = cook_cifar10(verbose=2) dataset = data.dataset_location() else: dataset = sys.argv[1] else: print "provide dataset" if dataset is None: print " creating a new dataset to run through" from yann.special.datasets import cook_cifar10 from yann.special.datasets import cook_mnist # data = cook_cifar10 (verbose = 2) data = cook_mnist() dataset = data.dataset_location() lenet5(dataset, verbose=2) # lenet_maxout (dataset, verbose = 3)