#!/usr/bin/env python
from yann.network import network
from yann.utils.pickle import load
import time
import sys

#run = 1
dataset = sys.argv[1]
momentum = "nesterov"
optim = "rmsprop"
lr = (0.01, 0.005, 0.001)

params = load('network_dataset_96731.pkl')

# create a network
net = network()
dataset_params = {"dataset": dataset, "id": 'svhn', "n_classes": 10}
net.add_layer(type="input", id="input", dataset_init_args=dataset_params)

# adding layers
net.add_layer(type="conv_pool",
              origin="input",
              id="conv_pool_1",
              num_neurons=20,
              filter_size=(5, 5),
              pool_size=(2, 2),
              batch_norm=True,
              activation='relu',
              input_params=params['conv_pool_1'],
              learnable=False)
Exemple #2
0
    epochs = (40, 40)

    p_vals = [0, 10, 50, 100, 500, 1000, 2500, 4700]
    #p_vals = [0]
    # setup incremental dataset parameters dataset.
    """temp_splits = { "shot"               : [6,7,8,9],
                    "base"               : [0,1,2,3,4,5],    
                    "p"                  : 0   }"""

    temp_base_data = inc_dataset(  #splits = temp_splits, 
        verbose=1)
    temp_base_data = temp_base_data.dataset_location()
    site2 = igan(init_dataset=temp_base_data, root=root, verbose=1)

    print(". Setup transfered gan network from site 1.")
    gan_params = load(site_1_root + '/resultor/gan/params/epoch_' + str(gan) +
                      '.pkl')
    site2.setup_gan(dataset=temp_base_data,
                    root=root,
                    params=gan_params,
                    cook=False,
                    verbose=1)

    print(". Setup transfered base network from site 1.")
    base_params = load(site_1_root +
                       '/resultor/base-network/params/epoch_99.pkl')
    site2.setup_base_mlp(dataset=temp_base_data,
                         root=root,
                         params=base_params,
                         cook=False,
                         verbose=1)
Exemple #3
0
        "batches2validate": 2,
        "mini_batch_size": 500
    }

    # setup incremental dataset parameters dataset.
    temp_splits = {"shot": [6, 7, 8, 9], "base": [0, 1, 2, 3, 4, 5], "p": 0}

    temp_base_data = inc_dataset(splits=temp_splits,
                                 data_params=temp_data_params,
                                 location=data_loc,
                                 verbose=1)
    temp_base_data = temp_base_data.dataset_location()
    site2 = igan(init_dataset=temp_base_data, root=root, verbose=1)

    print(". Setup transfered gan network from site 1.")
    gan_params = load(site_1_root + '/resultor/gan/params/gan-5-31.pkl')
    site2.setup_gan(dataset=temp_base_data,
                    root=root,
                    params=gan_params,
                    cook=False,
                    verbose=1)

    print(". Setup transfered base network from site 1.")
    base_params = load(site_1_root +
                       '/resultor/base-network/params/epoch_9.pkl')
    site2.setup_base_mlp(dataset=temp_base_data,
                         root=root,
                         params=base_params,
                         cook=False,
                         verbose=1)
Exemple #4
0
#!/usr/bin/env python
from yann.network import network
from yann.utils.pickle import load
import time
import sys

#run = 1
dataset = sys.argv[1]
momentum = "nesterov"
optim = "rmsprop"
lr = (0.01, 0.005, 0.001)

params = load('network_dataset_90998.pkl')

# create a network
net = network()
dataset_params = {"dataset": dataset, "id": 'svhn', "n_classes": 10}
net.add_layer(type="input", id="input", dataset_init_args=dataset_params)

# adding layers
net.add_layer(type="conv_pool",
              origin="input",
              id="conv_pool_1",
              num_neurons=20,
              filter_size=(5, 5),
              pool_size=(2, 2),
              batch_norm=True,
              activation='relu',
              input_params=params['conv_pool_1'],
              learnable=False)
#!/usr/bin/env python
from yann.network import network
from yann.utils.pickle import load
import time
import sys

#run = 1
dataset = sys.argv[1]
momentum = "nesterov"
optim = "rmsprop"
lr = (0.01, 0.005, 0.001)

params = load('network_dataset_32589.pkl')

# create a network
net = network()
dataset_params = {"dataset": dataset, "id": 'svhn', "n_classes": 10}
net.add_layer(type="input", id="input", dataset_init_args=dataset_params)

# adding layers
net.add_layer(type="conv_pool",
              origin="input",
              id="conv_pool_1",
              num_neurons=20,
              filter_size=(5, 5),
              pool_size=(2, 2),
              batch_norm=True,
              activation='relu',
              input_params=params['conv_pool_1'],
              learnable=False)
Exemple #6
0
 def test_load(self, mock_open, mock_shared_params, mock_load):
     util_pickle.load('file', verbose=3)
     self.assertTrue(mock_load.called)
     self.assertTrue(mock_shared_params.called)
     self.assertTrue(mock_open.called)
Exemple #7
0
import theano
print("Theano Default Device: ")
print(theano.config.device)
import sys  # For CLI args
from yann.network import network
net = network()

dataset_params = {"dataset": sys.argv[2], "id": 'mnist', "n_classes": 10}

# Begin ConvNet Setup using old params
# Load already trained params
from yann.utils.pickle import load
parts = sys.argv[1].split('/')
load_str = 'network' + parts[1] + '.pkl'
print "Loading Network From: " + load_str
old_params = load(load_str)
print "Old Layers: "
print old_params.keys()

net.add_layer(type="input", id="input", dataset_init_args=dataset_params)

net.add_layer(type="conv_pool",
              origin="input",
              id="conv_pool_1",
              num_neurons=20,
              filter_size=(5, 5),
              pool_size=(2, 2),
              activation=('maxout', 'maxout', 2),
              batch_norm=True,
              regularize=True,
              verbose=True,