Exemple #1
0
    def test_create_constant_theta(self):
        constant = 3
        dimension = 4
        finite_elements = 5

        # test normal use
        res_dict = dict(
            zip(range(finite_elements),
                [constant * DM.ones(dimension, 1)] * finite_elements))
        theta = create_constant_theta(constant, dimension, finite_elements)
        for el in range(finite_elements):
            self.assertTrue(is_equal(theta[el], res_dict[el]))

        # Test 0 dimension
        res_dict = dict(
            zip(range(finite_elements),
                [constant * DM.ones(0, 1)] * finite_elements))
        theta = create_constant_theta(constant, 0, finite_elements)
        for el in range(finite_elements):
            self.assertTrue(is_equal(theta[el], res_dict[el]))
Exemple #2
0
    def test_join_thetas(self):
        # with 3 dicts with same size
        dimension = 2
        finite_elements = 5

        theta_1 = create_constant_theta(1, dimension, finite_elements)
        theta_2 = create_constant_theta(2, dimension + 1, finite_elements)
        theta_3 = create_constant_theta(3, dimension + 2, finite_elements)
        res = join_thetas(theta_1, theta_2, theta_3)
        self.assertEqual(len(res), finite_elements)
        for el in range(finite_elements):
            self.assertEqual(res[el].shape, (3 * dimension + 3, 1))

        # with a dict and empty dict
        dimension = 2
        finite_elements = 5

        theta_1 = create_constant_theta(1, dimension, finite_elements)
        theta_2 = {}
        res = join_thetas(theta_1, theta_2)
        self.assertEqual(len(res), finite_elements)
        for el in range(finite_elements):
            self.assertEqual(res[el].shape, (dimension, 1))

        # with a dict and None
        dimension = 2
        finite_elements = 5

        theta_1 = create_constant_theta(1, dimension, finite_elements)
        theta_2 = None
        res = join_thetas(theta_1, theta_2)
        self.assertEqual(len(res), finite_elements)
        for el in range(finite_elements):
            self.assertEqual(res[el].shape, (dimension, 1))

        # with a dict and None
        dimension = 2
        finite_elements = 5

        theta_1 = create_constant_theta(1, dimension, finite_elements)
        theta_2 = create_constant_theta(1, dimension, finite_elements + 5)

        self.assertRaises(ValueError, join_thetas, theta_1, theta_2)
Exemple #3
0
    def call_solver(self,
                    initial_guess=None,
                    p=None,
                    theta=None,
                    x_0=None,
                    last_u=None,
                    initial_guess_dict=None):
        if self.opt_problem is None:
            self.create_optimization_problem()

        if x_0 is None:
            x_0 = self.problem.x_0

        if not vertcat(x_0).numel() == self.model.n_x:
            raise ValueError(
                'Size of given x_0 (or obtained from problem.x_0) is different from model.n_x, '
                'x_0.numel() = {}, model.n_x = {}'.format(
                    vertcat(x_0).numel(), self.model.n_x))

        # parameters
        if p is None:
            if self.problem.n_p_opt == self.model.n_p:
                p = repmat(0, self.problem.n_p_opt)
            elif self.problem.model.n_p - 1 > 0:
                raise ValueError(
                    "A parameter 'p' of size {} should be given.".format(
                        self.problem.model.n_p))
            else:
                p = []

        # theta
        if theta is None:
            if self.problem.n_theta_opt == self.model.n_theta:
                theta = create_constant_theta(0, self.problem.n_theta_opt,
                                              self.finite_elements)
            elif self.problem.model.n_theta - self.n_relax * self.degree > 0:
                raise ValueError(
                    "A parameter 'theta' of size {} should be given".format(
                        self.problem.model.n_theta))

        # last control
        if not self.last_control_as_parameter and last_u is not None:
            raise warnings.warn(
                'solution_method.last_control_as_parameter is False, but last_u was passed. last_u will'
                ' be ignored.')
        else:
            if last_u is not None:
                if isinstance(last_u, list):
                    last_u = vertcat(*last_u)
            elif self.problem.last_u is not None:
                last_u = self.problem.last_u

        # initialize variables
        it = 0
        t_0 = time.time()

        while True:
            t1 = time.time()
            if self.nu_tilde is not None:
                self.nu = self.nu_tilde

            theta_k = self.join_nu_to_theta(theta, self.nu)
            p_k = vertcat(p, self.mu)

            # build the optimization parameter vector
            if theta_k is not None:
                theta_k_vector = vertcat(*theta_k.values())
                par = vertcat(p_k, theta_k_vector)
            else:
                par = p_k

            # initial condition
            if self.initial_condition_as_parameter:
                par = vertcat(par, x_0)

            if last_u is not None:
                par = vertcat(par, last_u)
            elif self.problem.last_u is not None:
                par = vertcat(par, self.problem.last_u)

            if initial_guess_dict is None:
                args = dict(initial_guess=initial_guess, p=par)
            else:
                args = dict(initial_guess=initial_guess_dict['x'],
                            p=par,
                            lam_x=initial_guess_dict['lam_x'],
                            lam_g=initial_guess_dict['lam_g'])

            # solve the optimization problem
            raw_solution_dict = self.opt_problem.solve(**args)
            initial_guess_dict = raw_solution_dict

            it += 1

            # update parameters
            if not self.no_update_after_solving:
                error = self._compute_new_nu_and_error(
                    p=p_k, theta=theta_k, raw_solution_dict=raw_solution_dict)
                self._update_mu()
                self.last_violation_error = error
            else:
                error = None

            if self.verbose >= 2:
                if it == 1:
                    print('{} | {} | {}'.format('Iter.', ' Viol. Error',
                                                'Sol. Time'))

                if error is not None:
                    print('{:>5} | {:e} | {:>9.3f}'.format(
                        it, float(error),
                        time.time() - t1))
                else:
                    print('{:>5} | {} | {:>9.3f}'.format(
                        it, 'Not computed',
                        time.time() - t1))

            # Exit condition: error < tol
            if error is not None and error < self.tol:
                if self.verbose:
                    print(
                        '=== Exiting: {} | Viol. Error: {} | Total time: {} ==='
                        .format('Tolerance met', error,
                                time.time() - t_0))
                break

            # Exit condition: max_iter
            if it == self.max_iter:
                if self.verbose:
                    print(
                        '=== Exiting: {} | Viol. Error: {} | Total time: {} ==='
                        .format('Max iteration reached', error,
                                time.time() - t_0))
                break

        return raw_solution_dict, p_k, theta_k, x_0, last_u
Exemple #4
0
    def __init__(self,
                 problem,
                 ocp_solver_class,
                 solver_options=None,
                 **kwargs):
        """
            Augmented Lagrange Method (Aguiar 2016)

        :param yaocptool.modelling.OptimalControlProblem: Optimal Control Problem
        :param type ocp_solver_class: Class of Solution Method (Direct/Indirect Method)
        :param solver_options: Options for the Solution Method class given
        :param relax_algebraic_index: Index for the algebraic equations that will be relaxed, if not given all the
            algebraic equations will be relaxed
        :param relax_algebraic_var_index: Index for the algebraic variables that will be relaxed, if not given it will
            be assumed the same as the 'relax_algebraic_index'
        :param relax_state_bounds: This relax the states bounds and put then in the objective, via an algebraic variable
        :param kwargs:
        """
        if solver_options is None:
            solver_options = {}

        self.degree = 3
        self.degree_control = 3

        self.n_relax = 0
        self.mu_sym = None
        self.nu_sym = DM([])
        self.nu_par = DM([])
        self.nu_pol = DM([])

        self.max_iter = 20
        self.mu_0 = 1.
        self.beta = 4.
        self.mu_max = self.mu_0 * self.beta**10
        self.nu = None
        self.nu_tilde = None
        self.last_violation_error = -1
        self.alg_violation = None
        self.eq_violation = None
        self.new_nu_func = None

        self.tol = 1e-6
        self.last_solution = ()

        self.solver = None
        self.ocp_solver = None
        self.solver_initialized = False

        self.relax_algebraic_index = None
        self.relax_algebraic_var_index = None
        self.relax_time_equality_index = None
        self.relax_time_equality_var_index = None
        self.relax_state_bounds = False

        self.relaxed_alg = []
        self.relaxed_eq = []

        self.no_update_after_solving = False

        self.verbose = 1

        self._debug_skip_parametrize = False
        self._debug_skip_initialize = False
        self._debug_skip_compute_nu_and_error = False
        self._debug_skip_update_nu = False
        self._debug_skip_update_mu = False

        super(AugmentedLagrangian, self).__init__(problem, **kwargs)

        self.mu = self.mu_0

        # RELAXATION
        self.mu_sym = self.problem.create_parameter('mu')

        if self.relax_algebraic_index is None:
            self.relax_algebraic_index = range(self.model.n_y)
        if self.relax_algebraic_var_index is None:
            self.relax_algebraic_var_index = self.relax_algebraic_index
        if self.relax_time_equality_index is None:
            self.relax_time_equality_index = []
        if self.relax_time_equality_var_index is None:
            self.relax_time_equality_var_index = []

        if self.model.alg[self.relax_algebraic_index].numel() > 0:
            self._relax_algebraic_equations()

        if self.model.alg[self.relax_time_equality_index].numel() > 0:
            self._relax_time_equalities()

        if self.relax_state_bounds:
            self._relax_states_constraints()

        if not self._debug_skip_initialize:
            if not self._debug_skip_parametrize:
                self._parametrize_nu()

            if self.nu is None:
                self.nu = self.create_nu_initial_guess()
            if self.alg_violation is None:
                self.alg_violation = create_constant_theta(
                    constant=0,
                    dimension=len(self.relax_algebraic_index) * self.degree,
                    finite_elements=self.finite_elements)
            if self.eq_violation is None:
                self.eq_violation = create_constant_theta(
                    constant=0,
                    dimension=len(self.relax_time_equality_index) *
                    self.degree,
                    finite_elements=self.finite_elements)

        # make sure that the ocp_solver and the augmented_lagrangian has the same options
        for attr in [
                'degree', 'finite_elements', 'degree_control',
                'integrator_type'
        ]:
            if attr in solver_options and attr in kwargs and solver_options[
                    attr] != kwargs[attr]:
                exc_mess = "Trying to pass attribute '{}' for '{}' and '{}' that are not equal: {} != {}"
                raise Exception(
                    exc_mess.format(attr, self.__class__.__name__,
                                    ocp_solver_class.__name__, kwargs[attr],
                                    solver_options[attr]))
            elif attr in solver_options:
                setattr(self, attr, solver_options[attr])
            else:
                solver_options[attr] = getattr(self, attr)

        solver_options['integrator_type'] = self.integrator_type

        # Initialize OCP solver
        self.ocp_solver = ocp_solver_class(self.problem, **solver_options)
Exemple #5
0
 def create_nu_initial_guess(self):
     nu = create_constant_theta(constant=0,
                                dimension=self.n_relax * self.degree,
                                finite_elements=self.finite_elements)
     return nu
    def call_solver(self,
                    initial_guess=None,
                    p=None,
                    theta=None,
                    x_0=None,
                    last_u=None,
                    initial_guess_dict=None):
        if self.opt_problem is None:
            self.create_optimization_problem()

        # initial conditions
        if x_0 is None:
            x_0 = self.problem.x_0
        if isinstance(x_0, list):
            x_0 = vertcat(x_0)

        if not vertcat(x_0).numel() == self.model.n_x:
            raise Exception(
                'Size of given x_0 (or obtained from problem.x_0) is different from model.n_x, '
                'x_0.numel() = {}, model.n_x = {}'.format(
                    vertcat(x_0).numel(), self.model.n_x))

        # parameters
        if p is None:
            if self.problem.n_p_opt == self.model.n_p:
                p = DM.zeros(self.problem.n_p_opt)
            elif self.problem.model.n_p > 0:
                raise Exception(
                    "A parameter 'p' of size {} should be given".format(
                        self.problem.model.n_p))

        if isinstance(p, list):
            p = DM(p)

        # theta
        if theta is None:
            if self.problem.n_theta_opt == self.model.n_theta:
                theta = create_constant_theta(0, self.problem.n_theta_opt,
                                              self.finite_elements)
            elif self.problem.model.n_theta > 0:
                raise Exception(
                    "A parameter 'theta' of size {} should be given".format(
                        self.problem.model.n_theta))

        # Prepare NLP parameter vector
        theta_vector, par_x_0, par_last_u = [], [], []
        if theta is not None:
            theta_vector = vertcat(
                *[theta[i] for i in range(self.finite_elements)])

        if self.initial_condition_as_parameter:
            par_x_0 = x_0

        # last control
        if not self.last_control_as_parameter and last_u is not None:
            raise warnings.warn(
                'solution_method.last_control_as_parameter is False, but last_u was passed. last_u will'
                ' be ignored.')
        else:
            if last_u is not None:
                if isinstance(last_u, list):
                    last_u = vertcat(*last_u)
            elif self.problem.last_u is not None:
                last_u = self.problem.last_u
            elif self.last_control_as_parameter and last_u is None:
                raise Exception(
                    'last_control_as_parameter is True, but no "last_u" was passed and the "ocp.last_u" is '
                    'None.')

        if self.last_control_as_parameter:
            par_last_u = last_u

        par = vertcat(p, theta_vector, par_x_0, par_last_u)

        if initial_guess_dict is None:
            if initial_guess is None:
                if self.initial_guess_heuristic == 'simulation':
                    initial_guess = self.discretizer.create_initial_guess_with_simulation(
                        p=p, theta=theta)
                elif self.initial_guess_heuristic == 'problem_info':
                    initial_guess = self.discretizer.create_initial_guess(
                        p, theta)
                else:
                    raise ValueError(
                        'initial_guess_heuristic did not recognized, available options: "simulation" and '
                        '"problem_info". Given: {}'.format(
                            self.initial_guess_heuristic))
            args = dict(initial_guess=initial_guess, p=par)
        else:
            args = dict(initial_guess=initial_guess_dict['x'],
                        p=par,
                        lam_x=initial_guess_dict['lam_x'],
                        lam_g=initial_guess_dict['lam_g'])

        sol = self.opt_problem.solve(**args)
        return sol, p, theta, x_0, last_u