def draw_boundaries(): data = datasets.load_iris().data[:, : 2] # we only take the first two features. label = np.array(datasets.load_iris().target, dtype=int) # Take classes names data = StandardScaler().fit_transform(data) # Rescale data viz = DecisionViz( GaussianNB(), title="Gaussian", features=['Sepal Length', 'Sepal Width'], classes=['A', 'B', 'C'] # Determine dimension and no. of classes ) viz.fit(data, label) # Train data to draw viz.draw(data, label) # Draw Data viz.show()
from sklearn.model_selection import train_test_split as tts from sklearn.preprocessing import StandardScaler from sklearn import datasets import pandas as pd from sklearn.neighbors import KNeighborsClassifier from yellowbrick.contrib.classifier import DecisionViz iris = datasets.load_iris() labels = pd.DataFrame(iris.target) labels.columns = ['labels'] data = pd.DataFrame(iris.data) data.columns = ['Sepal length', 'Sepal width', 'Petal length', 'Petal width'] data = pd.concat([data, labels], axis=1) data_sp = data[['Sepal length', 'Sepal width', 'labels']] X = StandardScaler().fit_transform(data_sp.drop(['labels'], axis=1)) X_train, X_test, y_train, y_test = tts(X, data_sp['labels'], test_size=.4, random_state=42) viz = DecisionViz(KNeighborsClassifier(3), title="Nearest Neighbors", features=['Feature One', 'Feature Two'], classes=["0", "1", "2"]) viz.fit(X_train, y_train) viz.draw(X_test, y_test) viz.show()