def balance_class_balance(path="images/class_balance.png"):
    data = load_game()
    y = data["outcome"]

    oz = ClassBalance(labels=["draw", "loss", "win"])
    oz.fit(y)
    return oz.poof(outpath=path)
def balance_class_balance(path="images/class_balance.png"):
    data = load_game()
    y = data["outcome"]

    oz = ClassBalance(labels=["draw", "loss", "win"])
    oz.fit(y)
    return oz.poof(outpath=path)
def compare_class_balance(path="images/class_balance_compare.png"):
    data = load_occupancy()

    features = ["temperature", "relative_humidity", "light", "C02", "humidity"]
    classes = ['unoccupied', 'occupied']

    # Extract the numpy arrays from the data frame
    X = data[features]
    y = data["occupancy"]

    # Create the train and test data
    _, _, y_train, y_test = train_test_split(X, y, test_size=0.2)

    # Instantiate the classification model and visualizer
    visualizer = ClassBalance(labels=classes)

    visualizer.fit(y_train, y_test)
    return visualizer.poof(outpath=path)
def compare_class_balance(path="images/class_balance_compare.png"):
    data = load_occupancy()

    features = ["temperature", "relative_humidity", "light", "C02", "humidity"]
    classes = ['unoccupied', 'occupied']

    # Extract the numpy arrays from the data frame
    X = data[features]
    y = data["occupancy"]

    # Create the train and test data
    _, _, y_train, y_test = train_test_split(X, y, test_size=0.2)

    # Instantiate the classification model and visualizer
    visualizer = ClassBalance(labels=classes)

    visualizer.fit(y_train, y_test)
    return visualizer.poof(outpath=path)
Exemple #5
0
        else:
            o[(index * n_ngrams) + i] = features
bs = bs[~np.all(bs == 0, axis=1)]
o = o[~np.all(o == 0, axis=1)]

binding_sites = bs
other = o
binding_sites_labels = np.ones(binding_sites.shape[0], dtype=np.uint8)
other_labels = np.zeros(other.shape[0], dtype=np.uint8)
X = np.concatenate((binding_sites, other))
y = np.concatenate((binding_sites_labels, other_labels))

# %%
visualizer = ClassBalance(labels=class_names)
visualizer.fit(y)
visualizer.poof()

# %%
visualizer = ParallelCoordinates()
visualizer.fit_transform(X, y)
visualizer.poof()

# %%
visualizer = Rank1D()
visualizer.fit(X, y)
visualizer.transform(X)
visualizer.poof()

# %%
visualizer = Rank2D()
visualizer.fit_transform(X)
Exemple #6
0
def visualizeClassImbalance(labels_train, lables_test=None):
    visualizer = ClassBalance(labels=["boring", "interesting"])
    visualizer.fit(labels_train, lables_test)
    visualizer.poof()
Exemple #7
0
def class_balance(classes, y):
    from yellowbrick.target import ClassBalance
    visualizer = ClassBalance(labels=classes)
    visualizer.fit(y)
    visualizer.poof()
Exemple #8
0
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, presort='deprecated',
                       random_state=0, splitter='best')

viz = FeatureImportances(dt)
viz.fit(X_train, y_train)
viz.show();

from yellowbrick.classifier import ROCAUC

visualizer = ROCAUC(rf, classes = ['stayed','quit'])

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof();

from yellowbrick.classifier import ROCAUC

visualizer = ROCAUC(dt, classes = ['stayed','quit'])

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.poof();

"""### So, I can sayb the Random Forest Classifier performed better in this dataset.

Thanks for Checking this out!

---
Exemple #9
0
 def draw_class_balance(self):
     visualizer = ClassBalance(labels=self.le.classes_)
     visualizer.fit(self.training_labels)
     visualizer.poof()