val_length = len(dset) - train_length train_set, val_set = random_split(dset, [train_length, val_length]) # Prepare dataloaders train_loader = DataLoader(train_set, batch_size=5000, shuffle=True, num_workers=4) val_loader = DataLoader(val_set, batch_size=10000, shuffle=False, num_workers=4) # Prepare trainer #trainer = Trainer(cpic(), CrossEntropyLoss(), lr=0.1) trainer = Trainer(polarity(), CrossEntropyLoss(), lr=0.01) # Train model over training dataset trainer.train(train_loader, val_loader, epochs=50, print_freq=100) #resume='checkpoint_best.pth.tar') # Save training results to disk trainer.results(path='scsn_polarity_results.pth.tar') # Validate saved model results = torch.load('scsn_polarity_results.pth.tar') #model = cpic() model = polarity() model.load_state_dict(results['model']) trainer = Trainer(model, CrossEntropyLoss(), lr=0.1) trainer.validate(val_loader, print_freq=100)
train_set, val_set = random_split(dset, [train_length, val_length]) # Prepare dataloaders train_loader = DataLoader(train_set, batch_size=20, shuffle=True, num_workers=4) val_loader = DataLoader(val_set, batch_size=20, shuffle=False, num_workers=4) # Prepare trainer #trainer = Trainer(cpic(), CrossEntropyLoss(), lr=0.1) #trainer = Trainer(polarity(), CrossEntropyLoss(), lr=0.1) trainer = Trainer(focal_mechanism(), CrossEntropyLoss(), lr=0.0001) # Train model over training dataset trainer.train(train_loader, val_loader, epochs=100, print_freq=10) #resume='checkpoint_best.pth.tar') # Save training results to disk trainer.results(path='taiwan_focal_mechanism_results.pth.tar') # Validate saved model results = torch.load('taiwan_focal_mechanism_results.pth.tar') #model = cpic() #model = polarity() model = focal_mechanism() model.load_state_dict(results['model']) trainer = Trainer(model, CrossEntropyLoss(), lr=0.1)
sample_transform=waveform_transform, target_transform=target_transform) train_length = int(len(dset) * 0.8) val_length = len(dset) - train_length train_set, val_set = random_split(dset, [train_length, val_length]) # Uncomment for chronological split # train_set = Subset(dset, range(train_length)) # val_set = Subset(dset, range(train_length, len(dset))) # Dataloaders train_loader = DataLoader(train_set, batch_size=512, shuffle=True, num_workers=4) val_loader = DataLoader(val_set, batch_size=10000, shuffle=False, num_workers=8) # CNN model model = Cpic40() # Trainer trainer = Trainer(model, CrossEntropyLoss(), lr=0.1) # Training process trainer.train(train_loader, val_loader, epochs=200, print_freq=1000) # Save training results to disk trainer.results(path='ok_results.pth.tar')
train_length = int(len(dset) * 0.8) val_length = len(dset) - train_length train_set, val_set = random_split(dset, [train_length, val_length]) # Prepare dataloaders train_loader = DataLoader(train_set, batch_size=100, shuffle=True, num_workers=4) val_loader = DataLoader(val_set, batch_size=1000, shuffle=False, num_workers=8) # Prepare trainer trainer = Trainer(cpic(), CrossEntropyLoss(), lr=0.1) # Train model over training dataset trainer.train(train_loader, val_loader, epochs=100, print_freq=100) #resume='checkpoint_best.pth.tar') # Save training results to disk trainer.results(path='wenchuan_results.pth.tar') # Validate saved model results = torch.load('wenchuan_results.pth.tar') model = cpic() model.load_state_dict(results['model']) trainer = Trainer(model, CrossEntropyLoss(), lr=0.1) trainer.validate(val_loader, print_freq=100)