Exemple #1
0
def test_pandas2dict():
    r"""Test conversion of a Pandas data frame to a dictionary and back."""
    assert_raises(TypeError, serialize.dict2pandas, None)
    assert_raises(TypeError, serialize.pandas2dict, None)
    nele = 5
    names = ["complex", "name", "number", "value"]
    dtypes = ['c16', 'S5', 'i8', 'f8']
    dtype = np.dtype([(n, f) for n, f in zip(names, dtypes)])
    arr_mix = np.zeros(nele, dtype)
    arr_mix['name'][0] = 'hello'
    arr_obj = np.array([list(), 'hello', 5], dtype='O')
    test_arrs = [
        arr_mix,
        np.zeros(nele, 'float'), arr_mix['name'], arr_obj,
        np.array([])
    ]
    for ans in test_arrs:
        frame = serialize.numpy2pandas(ans)
        # Sorted
        d = serialize.pandas2dict(frame)
        res = serialize.dict2pandas(d)
        np.testing.assert_array_equal(res, frame)
        # Provided
        d = serialize.pandas2dict(frame)
        res = serialize.dict2pandas(d, order=ans.dtype.names)
        np.testing.assert_array_equal(res, frame)
Exemple #2
0
def test_numpy2pandas():
    r"""Test conversion of a numpy array to a pandas data frame and back."""
    with pytest.raises(TypeError):
        serialize.numpy2pandas(None)
    with pytest.raises(TypeError):
        serialize.pandas2numpy(None)
    nele = 5
    names = ["name", "number", "value", "complex"]
    dtypes = ['S5', 'i8', 'f8', 'c16']
    dtype = np.dtype([(n, f) for n, f in zip(names, dtypes)])
    arr_mix = np.zeros(nele, dtype)
    arr_mix['name'][0] = 'hello'
    arr_obj = np.array([list(), 'hello', 5], dtype='O')
    test_arrs = [
        arr_mix,
        np.zeros(nele, 'float'), arr_mix['name'], arr_obj,
        np.array([])
    ]
    for ans in test_arrs:
        frame = serialize.numpy2pandas(ans)
        res = serialize.pandas2numpy(frame)
        np.testing.assert_array_equal(ans, res)
Exemple #3
0
def pandas_send_converter(obj):
    r"""Performs conversion from a limited set of objects to a Pandas data frame
    for sending to a file via PandasFileComm. Currently supports converting from
    structured numpy arrays, lists/tuples of numpy arrays, and dictionaries.

    Args:
        obj (object): Object to convert.

    Returns:
        pandas.DataFrame: Converted data frame (or unmodified input if conversion
            could not be completed.

    """
    if isinstance(obj, (list, tuple)):
        obj = serialize.list2pandas(obj)
    elif isinstance(obj, np.ndarray):
        obj = serialize.numpy2pandas(obj)
    elif isinstance(obj, dict):
        obj = serialize.dict2pandas(obj)
    return obj
Exemple #4
0
    def evaluate_transform(self, x, no_copy=False):
        r"""Call transform on the provided message.

        Args:
            x (object): Message object to transform.
            no_copy (bool, optional): If True, the transformation occurs in
                place. Otherwise a copy is created and transformed. Defaults
                to False.

        Returns:
            object: The transformed message.

        """
        if isinstance(x, pandas.DataFrame):
            out = x
        else:
            out = super(PandasTransform,
                        self).evaluate_transform(x, no_copy=no_copy)
            out = numpy2pandas(out)
        return out
Exemple #5
0
    def get_testing_options(cls):
        r"""Get testing options for the transform class.

        Returns:
            list: Multiple dictionaries of keywords and messages before/after
                pairs that will result from the transform created by the provided
                keywords.
        
        """
        length = 5
        t = {
            'type':
            'array',
            'items': [{
                'type': '1darray',
                'subtype': 'bytes',
                'precision': 40,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'int',
                'precision': 64,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'float',
                'precision': 64,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'complex',
                'precision': 128,
                'length': length
            }]
        }
        dtype = np.dtype([(n, f) for n, f in zip(['f0', 'f1', 'f2', 'f3'],
                                                 ['S5', 'i8', 'f8', 'c16'])])
        x = np.zeros(length, dtype=dtype)
        x[dtype.names[0]][0] = b'hello'
        y = [x[n] for n in dtype.names]
        x = numpy2pandas(x)
        return [{
            'kwargs': {
                'original_datatype': t
            },
            'in/out': [(y, x)],
            'in/out_t': [(t, t)]
        }, {
            'kwargs': {
                'original_datatype': t
            },
            'in/out': [(x, x)],
            'in/out_t': [(t, t)]
        }, {
            'kwargs': {
                'original_datatype': t
            },
            'in/out': [(None, TypeError)]
        }, {
            'kwargs': {},
            'in/out': [([0, 1, 2], AssertionError)]
        }]
Exemple #6
0
    def get_testing_options(cls):
        r"""Get testing options for the transform class.

        Returns:
            list: Multiple dictionaries of keywords and messages before/after
                pairs that will result from the transform created by the provided
                keywords.
        
        """
        length = 5
        dtype = np.dtype([('f%d' % i, f)
                          for i, f in enumerate(['S5', 'i8', 'f8', 'c16'])])
        dtype_alt = np.dtype([
            ('alt%d' % i, f) for i, f in enumerate(['S5', 'i8', 'f8', 'c16'])
        ])
        t = {
            'type':
            'array',
            'items': [{
                'type': '1darray',
                'subtype': 'bytes',
                'precision': 40,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'int',
                'precision': 64,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'float',
                'precision': 64,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'complex',
                'precision': 128,
                'length': length
            }]
        }
        t_prec = {
            'type':
            'array',
            'items': [{
                'type': '1darray',
                'subtype': 'bytes',
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'int',
                'precision': 64,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'float',
                'precision': 64,
                'length': length
            }, {
                'type': '1darray',
                'subtype': 'complex',
                'precision': 128,
                'length': length
            }]
        }
        t_arr = {
            'type':
            'array',
            'items': [{
                'type': 'array',
                'items': [dict(i, type='scalar') for i in t['items']]
            } for _ in range(length)]
        }
        t_arr_err = copy.deepcopy(t_arr)
        t_arr_err['items'][0]['items'][0]['type'] = 'null'
        t_obj = {
            'type':
            'array',
            'items': [{
                'type': 'object',
                'properties': {
                    dtype_alt.names[i]: dict(t['items'][i], type='scalar')
                    for i in range(len(t['items']))
                }
            } for _ in range(length)]
        }
        t_arr_T = {
            'type':
            'array',
            'items': [{
                'type':
                'array',
                'items':
                [dict(t['items'][i], type='scalar') for _ in range(length)]
            } for i in range(len(t['items']))]
        }
        t_arr_prec = {
            'type':
            'array',
            'items': [{
                'type':
                'array',
                'items': [dict(i, type='scalar') for i in t_prec['items']]
            } for _ in range(length)]
        }
        t_alt = {
            'type':
            'array',
            'items': [
                dict(x, title=dtype_alt.names[i])
                for i, x in enumerate(t['items'])
            ]
        }
        x = np.zeros(length, dtype=dtype)
        x[dtype.names[0]][0] = b'hello'
        y = [x[n] for n in dtype.names]
        x2 = np.zeros((length, length), dtype=dtype)
        # y2 = [x2[n] for n in dtype2.names]
        return [{
            'kwargs': {
                'original_datatype': t
            },
            'in/out': [(y, x), ([], np.zeros(0, dtype=dtype))],
            'in/out_t':
            [(t, t), (t_arr_prec, t_prec), (t_arr_T, t), (t_obj, t_alt),
             ({
                 'type': 'null'
             }, AssertionError), (t['items'][0], t['items'][0]),
             ({
                 'type': 'array',
                 'items':
                 [dict(v, length=i) for i, v in enumerate(t['items'])]
             }, AssertionError), (t_arr_err, AssertionError)]
        }, {
            'in/out': [(x, x)]
        }, {
            'in/out': [(x2, x2)]
        }, {
            'kwargs': {
                'field_names': dtype_alt.names
            },
            'in/out': [(x, x.astype(dtype_alt, copy=True))],
            'in/out_t': [(t, t_alt)]
        }, {
            'kwargs': {
                'original_datatype': t
            },
            'in/out': [(numpy2pandas(x), x)],
            'in/out_t': [(t, t)]
        }, {
            'kwargs': {
                'original_datatype': t_arr
            },
            'in/out': [(x.tolist(), x)],
            'in/out_t': [(t_arr, t),
                         ({
                             'type': 'array',
                             'items': t_arr['items'][0]
                         }, t)]
        }, {
            'in/out': [({n: x[n]
                         for n in dtype.names}, x)],
            'in/out_t': [({
                'type': 'object',
                'properties': {n: i
                               for n, i in zip(dtype.names, t['items'])}
            }, {
                'type':
                'array',
                'items':
                [dict(i, title=n) for n, i in zip(dtype.names, t['items'])]
            })]
        }, {
            'kwargs': {
                'original_datatype': t_arr
            },
            'in/out': [(x.tolist(), x)],
            'in/out_t': [(t_arr, t)]
        }, {
            'kwargs': {
                'original_datatype': t
            },
            'in/out': [(None, TypeError)]
        }, {
            'kwargs': {},
            'in/out': [([0, 1, 2], AssertionError)]
        }]