def main(args): """ Show detected objects with boxes, lables and prediction scores in a vide stream """ # Load yolo model with pretrained weights print("Create YoloV3 model") config_parser = ConfigParser(args.config) model = config_parser.create_model(skip_detect_layer=False) detector = config_parser.create_detector(model) # Open video stream cap = cv2.VideoCapture(args.camera) if (cap.isOpened() == False): print("(Error) Could not open video stream") exit() # Detect objects in stream times = [] detect = 0 while True: # Capture every nth frame only because we are too slow # to capture every frame... ret, image = cap.read() #image, _ = resize_image(image, None, config_parser.get_net_size(), keep_ratio=True) if not ret: print("(Error) Lost connection to video stream") break # Detect objects and measure timing if detect <= 0: t1 = time.time() min_prob = 0.90 boxes, labels, probs = detector.detect(image, min_prob) t2 = time.time() times.append(t2 - t1) times = times[-20:] detect = 50 detect -= 1 # Display detected objects visualize_boxes(image, boxes, labels, probs, config_parser.get_labels()) image = cv2.putText( image, "Time: {:.2f}ms".format(sum(times) / len(times) * 1000), (0, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) cv2.imshow('Frame', image) # Exit with 'q' if cv2.waitKey(25) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
def main(): args = argparser.parse_args() # 1. create yolo model & load weights config_parser = ConfigParser(args.config) model = config_parser.create_model(skip_detect_layer=False) detector = config_parser.create_detector(model) labels = config_parser.get_labels() for image in args.images: predictImage(image, detector, labels) saveResults() return 0
help='path to image file') if __name__ == '__main__': args = argparser.parse_args() image_path = args.image # 1. create yolo model & load weights config_parser = ConfigParser(args.config) model = config_parser.create_model(skip_detect_layer=False) detector = config_parser.create_detector(model) # 2. Load image image = cv2.imread(image_path) image = image[:,:,::-1] # 3. Run detection boxes, labels, probs = detector.detect(image, 0.5) print(probs) # 4. draw detected boxes visualize_boxes(image, boxes, labels, probs, config_parser.get_labels()) # 5. plot plt.imshow(image) plt.show()
# 3. Run detection boxes, labels, probs = detector.detect(image, 0.5) # print(list(zip(labels, probs))) if len(labels) == 0: print(image_path, "nothing found") for (l, p) in zip(labels, probs): print(image_path, class_labels[l], p) # # 4. draw detected boxes # visualize_boxes(image, boxes, labels, probs, config_parser.get_labels()) # # # 5. plot # plt.imshow(image) # plt.show() if __name__ == '__main__': args = argparser.parse_args() # 1. create yolo model & load weights config_parser = ConfigParser(args.config) model = config_parser.create_model(skip_detect_layer=False) detector = config_parser.create_detector(model) labels = config_parser.get_labels() for image in args.images: predictImage(image, detector, labels)
counting += 1 if (log_progress == True): print("Processing Frame : ", str(counting)) check_frame_interval = counting % frame_detection_interval if (counting == 1 or check_frame_interval == 0): try: # detected_frame, output_objects_array = self.__detector.detectObjectsFromImage( # input_image=frame, input_type="array", output_type="array", # minimum_percentage_probability=minimum_percentage_probability, # display_percentage_probability=display_percentage_probability, # display_object_name=display_object_name) detected_frame_pre, output_objects_array, pred = detector.detect(frame, 0.2) visualize_boxes(frame, detected_frame_pre, output_objects_array, pred, config_parser.get_labels()) detected_frame = frame # plt.imshow(detected_frame) # plt.show() except: print('none') None output_frames_dict[counting] = output_objects_array output_objects_count = {} for eachItem in output_objects_array: eachItemName = eachItem try: