def tiny_yolo3lite_mobilenet_body(inputs, num_anchors, num_classes, alpha=1.0):
    '''Create Tiny YOLO_v3 Lite MobileNet model CNN body in keras.'''
    mobilenet = MobileNet(input_tensor=inputs,
                          weights='imagenet',
                          include_top=False,
                          alpha=alpha)

    # input: 416 x 416 x 3
    # conv_pw_13_relu :13 x 13 x (1024*alpha)
    # conv_pw_11_relu :26 x 26 x (512*alpha)
    # conv_pw_5_relu : 52 x 52 x (256*alpha)

    x1 = mobilenet.get_layer('conv_pw_11_relu').output

    x2 = mobilenet.get_layer('conv_pw_13_relu').output
    x2 = DarknetConv2D_BN_Leaky(int(512 * alpha), (1, 1))(x2)

    y1 = compose(
        #DarknetConv2D_BN_Leaky(int(1024*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(1024 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='14'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(DarknetConv2D_BN_Leaky(int(256 * alpha), (1, 1)),
                 UpSampling2D(2))(x2)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(512*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(512 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='15'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    x1 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output

    x2 = shufflenetv2.get_layer('1x1conv5_out').output
    x2 = DarknetConv2D_BN_Leaky(464, (1, 1))(x2)

    y1 = compose(
        #DarknetConv2D_BN_Leaky(1024, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=1024,
                                            kernel_size=(3, 3),
                                            block_id_str='17'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(DarknetConv2D_BN_Leaky(232, (1, 1)), UpSampling2D(2))(x2)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(464, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=464,
                                            kernel_size=(3, 3),
                                            block_id_str='18'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_mobilenetv3large_body(inputs,
                                         num_anchors,
                                         num_classes,
                                         alpha=1.0):
    '''Create Tiny YOLO_v3 Lite MobileNetV3Large model CNN body in keras.'''
    mobilenetv3large = MobileNetV3Large(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)

    # input: 416 x 416 x 3
    # activation_38(layer 194, final feature map): 13 x 13 x (960*alpha)
    # expanded_conv_14/Add(layer 191, end of block14): 13 x 13 x (160*alpha)

    # activation_29(layer 146, middle in block12) : 26 x 26 x (672*alpha)
    # expanded_conv_11/Add(layer 143, end of block11) : 26 x 26 x (112*alpha)

    # activation_15(layer 79, middle in block6) : 52 x 52 x (240*alpha)
    # expanded_conv_5/Add(layer 76, end of block5): 52 x 52 x (40*alpha)

    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    # f1 :13 x 13 x (960*alpha)
    f1 = mobilenetv3large.layers[194].output
    # f2: 26 x 26 x (672*alpha)
    f2 = mobilenetv3large.layers[146].output

    f1_channel_num = int(960 * alpha)
    f2_channel_num = int(672 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='15'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='16'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_mobilenetv3small_body(inputs,
                                         num_anchors,
                                         num_classes,
                                         alpha=1.0):
    '''Create Tiny YOLO_v3 Lite MobileNetV3Small model CNN body in keras.'''
    mobilenetv3small = MobileNetV3Small(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)

    # input: 416 x 416 x 3
    # activation_31(layer 165, final feature map): 13 x 13 x (576*alpha)
    # expanded_conv_10/Add(layer 162, end of block10): 13 x 13 x (96*alpha)

    # activation_22(layer 117, middle in block8) : 26 x 26 x (288*alpha)
    # expanded_conv_7/Add(layer 114, end of block7) : 26 x 26 x (48*alpha)

    # activation_7(layer 38, middle in block3) : 52 x 52 x (96*alpha)
    # expanded_conv_2/Add(layer 35, end of block2): 52 x 52 x (24*alpha)

    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    # f1 :13 x 13 x (576*alpha)
    f1 = mobilenetv3small.layers[165].output
    # f2: 26 x 26 x (288*alpha)
    f2 = mobilenetv3small.layers[117].output

    f1_channel_num = int(576 * alpha)
    f2_channel_num = int(288 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='15'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='16'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite model CNN body in keras.'''
    x1 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(16, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        Depthwise_Separable_Conv2D_BN_Leaky(32, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        Depthwise_Separable_Conv2D_BN_Leaky(64, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        Depthwise_Separable_Conv2D_BN_Leaky(128, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        Depthwise_Separable_Conv2D_BN_Leaky(256, (3, 3)))(inputs)
    x2 = compose(
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        Depthwise_Separable_Conv2D_BN_Leaky(512, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'),
        Depthwise_Separable_Conv2D_BN_Leaky(1024, (3, 3)),
        DarknetConv2D_BN_Leaky(256, (1, 1)))(x1)
    y1 = compose(Depthwise_Separable_Conv2D_BN_Leaky(512, (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x2)
    y2 = compose(Concatenate(),
                 Depthwise_Separable_Conv2D_BN_Leaky(256, (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5),
                               (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_mobilenetv2_body(inputs,
                                    num_anchors,
                                    num_classes,
                                    alpha=1.0):
    '''Create Tiny YOLO_v3 Lite MobileNetV2 model CNN body in keras.'''
    mobilenetv2 = MobileNetV2(input_tensor=inputs,
                              weights='imagenet',
                              include_top=False,
                              alpha=alpha)

    # input: 416 x 416 x 3
    # out_relu: 13 x 13 x 1280
    # block_13_expand_relu: 26 x 26 x (576*alpha)
    # block_6_expand_relu: 52 x 52 x (192*alpha)

    # f1 :13 x 13 x 1280
    f1 = mobilenetv2.get_layer('out_relu').output
    # f2: 26 x 26 x (576*alpha)
    f2 = mobilenetv2.get_layer('block_13_expand_relu').output

    f1_channel_num = int(1280 * alpha)
    f2_channel_num = int(576 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='17'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='18'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])
Exemple #7
0
def tiny_yolo3lite_xception_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite Xception model CNN body in keras.'''
    xception = Xception(input_tensor=inputs,
                        weights='imagenet',
                        include_top=False)

    # input: 416 x 416 x 3
    # block14_sepconv2_act: 13 x 13 x 2048
    # block13_sepconv2_bn(middle in block13): 26 x 26 x 1024
    # add_46(end of block12): 26 x 26 x 728
    # block4_sepconv2_bn(middle in block4) : 52 x 52 x 728
    # add_37(end of block3) : 52 x 52 x 256

    # f1 :13 x 13 x 2048
    f1 = xception.get_layer('block14_sepconv2_act').output
    # f2 :26 x 26 x 1024
    f2 = xception.get_layer('block13_sepconv2_bn').output

    f1_channel_num = 2048
    f2_channel_num = 1024
    #f1_channel_num = 1024
    #f2_channel_num = 512

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='14'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='15'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    # f1: 13 x 13 x 1024
    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f2: 26 x 26 x 464
    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output

    f1_channel_num = 1024
    f2_channel_num = 464
    #f1_channel_num = 1024
    #f2_channel_num = 512

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 head & output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='17'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 head & output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='18'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])
def tiny_yolo3lite_efficientnet_body(inputs,
                                     num_anchors,
                                     num_classes,
                                     level=0):
    '''
    Create Tiny YOLO_v3 Lite EfficientNet model CNN body in keras.
    # Arguments
        level: EfficientNet level number.
            by default we use basic EfficientNetB0 as backbone
    '''
    efficientnet, feature_map_info = get_efficientnet_backbone_info(
        inputs, level=level)

    f1 = efficientnet.get_layer('top_activation').output
    f2 = efficientnet.get_layer('block6a_expand_activation').output
    f1_channel_num = feature_map_info['f1_channel_num']
    f2_channel_num = feature_map_info['f2_channel_num']

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='8'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='9'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])
Exemple #10
0
def tiny_yolo3lite_xception_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite Xception model CNN body in keras.'''
    xception = Xception(input_tensor=inputs,
                        weights='imagenet',
                        include_top=False)

    # input: 416 x 416 x 3
    # block14_sepconv2_act: 13 x 13 x 2048
    # block13_sepconv2_bn(middle in block13): 26 x 26 x 1024
    # add_46(end of block12): 26 x 26 x 728
    # block4_sepconv2_bn(middle in block4) : 52 x 52 x 728
    # add_37(end of block3) : 52 x 52 x 256

    x1 = xception.get_layer('block13_sepconv2_bn').output
    # x1 :26 x 26 x 1024
    x2 = xception.get_layer('block14_sepconv2_act').output
    # x2 :13 x 13 x 2048
    x2 = DarknetConv2D_BN_Leaky(1024, (1, 1))(x2)

    y1 = compose(
        #DarknetConv2D_BN_Leaky(2048, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=2048,
                                            kernel_size=(3, 3),
                                            block_id_str='14'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(DarknetConv2D_BN_Leaky(512, (1, 1)), UpSampling2D(2))(x2)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(1024, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=1024,
                                            kernel_size=(3, 3),
                                            block_id_str='15'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])
Exemple #11
0
def tiny_yolo3lite_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite model CNN body in keras.'''
    #feature map 2 (26x26x256 for 416 input)
    f2 = compose(
            Depthwise_Separable_Conv2D_BN_Leaky(16, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            Depthwise_Separable_Conv2D_BN_Leaky(32, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            Depthwise_Separable_Conv2D_BN_Leaky(64, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            Depthwise_Separable_Conv2D_BN_Leaky(128, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            Depthwise_Separable_Conv2D_BN_Leaky(256, (3,3)))(inputs)

    #feature map 1 (13x13x1024 for 416 input)
    f1 = compose(
            MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
            Depthwise_Separable_Conv2D_BN_Leaky(512, (3,3)),
            MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='same'),
            Depthwise_Separable_Conv2D_BN_Leaky(1024, (3,3)))(f2)

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(256, (1,1))(f1)

    #feature map 1 output (13x13 for 416 input)
    y1 = compose(
            Depthwise_Separable_Conv2D_BN_Leaky(512, (3,3)),
            DarknetConv2D(num_anchors*(num_classes+5), (1,1)))(x2)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(
            DarknetConv2D_BN_Leaky(128, (1,1)),
            UpSampling2D(2))(x1)

    #feature map 2 output (26x26 for 416 input)
    y2 = compose(
            Concatenate(),
            Depthwise_Separable_Conv2D_BN_Leaky(256, (3,3)),
            DarknetConv2D(num_anchors*(num_classes+5), (1,1)))([x2, f2])

    return Model(inputs, [y1,y2])