def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith( '.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) # print(num_anchors) num_classes = len(self.class_names) # print(num_classes) is_tiny_version = num_anchors == 6 # default setting try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights( self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle( self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) if self.gpu_num >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False, weights_path='/.../model_data/best_weights.h5'): K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [ Input(shape=(h // { 0: 32, 1: 16 }[l], w // { 0: 32, 1: 16 }[l], num_anchors // 3, num_classes + 5)) for l in range(2) ] model_body = tiny_yolo_body(image_input, num_anchors // 3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format( num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=False, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body: # Do not freeze 3 output layers. num = len(model_body.layers) - 7 for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format( num, len(model_body.layers))) # define the loss function model_loss = Lambda(yolo_loss, output_shape=(1, ), name='yolo_loss', arguments={ 'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5 })([*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model